首页> 美国卫生研究院文献>Bioengineering >Design of Three-Dimensional Scaffolds with Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An In Silico Study
【2h】

Design of Three-Dimensional Scaffolds with Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An In Silico Study

机译:具有可调矩阵刚度的三维支架设计用于指导干细胞谱系规范:计算机模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tissue engineering is a multi-disciplinary area of research bringing together the fields of engineering and life sciences with the aim of fabricating tissue constructs aiding in the regeneration of damaged tissues and organs. Scaffolds play a key role in tissue engineering, acting as the templates for tissue regeneration and guiding the growth of new tissue. The use of stem cells in tissue engineering and regenerative medicine becomes indispensable, especially for applications involving successful long-term restoration of continuously self-renewing tissues, such as skin. The differentiation of stem cells is controlled by a number of cues, of which the nature of the substrate and its innate stiffness plays a vital role in stem cell fate determination. By tuning the substrate stiffness, the differentiation of stem cells can be directed to the desired lineage. Many studies on the effect of substrate stiffness on stem cell differentiation has been reported, but most of those studies are conducted with two-dimensional (2D) substrates. However, the native in vivo tissue microenvironment is three-dimensional (3D) and life science researchers are moving towards 3D cell cultures. Porous 3D scaffolds are widely used by the researchers for 3D cell culture and the properties of such scaffolds affects the cell attachment, proliferation, and differentiation. To this end, the design of porous scaffolds directly influences the stem cell fate determination. There exists a need to have 3D scaffolds with tunable stiffness for directing the differentiation of stem cells into the desired lineage. Given the limited number of biomaterials with all the desired properties, the design of the scaffolds themselves could be used to tune the matrix stiffness. This paper is an in silico study, investigating the effect of various scaffold parameter, namely fiber width, porosity, number of unit cells per layer, number of layers, and material selection, on the matrix stiffness, thereby offering a guideline for design of porous tissue engineering scaffolds with tunable matrix stiffness for directing stem cell lineage specification.
机译:组织工程学是一个多学科研究领域,将工程学和生命科学领域结合在一起,目的是制造有助于受损组织和器官再生的组织结构。支架在组织工程中起着关键作用,充当组织再生的模板并指导新组织的生长。干细胞在组织工程和再生医学中的使用变得必不可少,尤其是对于涉及连续自我更新组织(例如皮肤)成功长期修复的应用。干细胞的分化受许多线索控制,其中底物的性质及其固有的硬度在决定干细胞命运方面起着至关重要的作用。通过调节底物的刚度,干细胞的分化可以针对所需的谱系。已经报道了许多关于基质刚度对干细胞分化的影响的研究,但是其中大多数研究是使用二维(2D)基质进行的。但是,天然的体内组织微环境是三维(3D)的,生命科学研究者正朝着3D细胞培养的方向发展。研究人员广泛地使用多孔3D支架进行3D细胞培养,并且这种支架的特性会影响细胞的附着,增殖和分化。为此,多孔支架的设计直接影响干细胞命运的确定。需要具有可调节的刚度的3D支架,用于将干细胞的分化引导到期望的谱系中。鉴于具有所有所需特性的有限数量的生物材料,支架本身的设计可用于调整基质刚度。本文是一个计算机研究,研究了各种支架参数,即纤维宽度,孔隙率,每层单位单元数,层数和材料选择对基质刚度的影响,从而为多孔设计提供了指导具有可调节基质刚度的组织工程支架,用于指导干细胞谱系规范。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号