首页> 美国卫生研究院文献>Journal of Pharmaceutical Analysis >Microfluidics-based assay on the effects of microenvironmental geometry and aqueous flow on bacterial adhesion behaviors
【2h】

Microfluidics-based assay on the effects of microenvironmental geometry and aqueous flow on bacterial adhesion behaviors

机译:基于微流体的分析对微环境几何形状和水流对细菌粘附行为的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new microfluidic system with four different microchambers (a circle and three equilateral concave polygons) was designed and fabricated using poly(dimethylsiloxane) (PDMS) and the soft lithography method. Using this microfluidic device at six flow rates (5, 10, 20, 30, 40, and 50 μL/h), the effects of microenvironmental geometry and aqueous flow on bacterial adhesion behaviors were investigated. Escherichia coli HB101 pGLO, which could produce a green fluorescent protein induced by l-arabinose, was utilized as the model bacteria. The results demonstrated that bacterial adhesion was significantly related to culture time, microenvironment geometry, and aqueous flow rates. Adhered bacterial density increased with the culture time. Initially, the adhesion occurred at the microchamber sides, and then the entire chamber was gradually covered with increased culture time. Adhesion densities in the side zones were larger than those in the center zones because of the lower shearing force in the side zone. Also, the adhesion densities in the complex chambers were larger than those in the simple chambers. At low flow rates, the orientation of adhered bacteria was random and disorderly. At high flow rates, bacterial orientation became close to the streamline and oriented toward the flow direction. All these results implied that bacterial adhesion tended to occur in complicated aqueous flow areas. The present study provided an on-chip flow system for physiological behavior of biological cells, as well as provided a strategic cue for the prevention of bacterial infection and biofilm formation.
机译:使用聚二甲基硅氧烷(PDMS)和软光刻方法设计和制造了具有四个不同微腔(一个圆形和三个等边凹多边形)的新微流体系统。使用该微流体装置以六种流速(5、10、20、30、40和50μL/ h)进行了研究,研究了微环境几何形状和水流对细菌粘附行为的影响。将可产生由1-阿拉伯糖诱导的绿色荧光蛋白的大肠杆菌HB101 pGLO用作模型细菌。结果表明细菌粘附与培养时间,微环境几何形状和水流速率显着相关。附着的细菌密度随培养时间而增加。最初,粘附发生在微腔室侧面,然后整个培养室逐渐被覆盖,并增加了培养时间。由于侧面区域的剪切力较低,侧面区域的粘合密度大于中间区域的粘合密度。而且,复杂腔室中的粘附密度大于简单腔室中的粘附密度。在低流速下,附着细菌的方向是随机且无序的。在高流速下,细菌的方向变得接近流线,并朝向流动方向。所有这些结果暗示细菌粘附倾向于在复杂的水流区域中发生。本研究为生物细胞的生理行为提供了芯片上的流动系统,并为预防细菌感染和生物膜形成提供了战略线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号