首页> 美国卫生研究院文献>Biomicrofluidics >Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics microstreaming and biological effects
【2h】

Layered acoustofluidic resonators for the simultaneous optical and acoustic characterisation of cavitation dynamics microstreaming and biological effects

机译:分层声流体谐振器用于同时对空化动力学微流和生物效应进行光学和声学表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of the effects of ultrasound-induced acoustic cavitation on biological structures is an active field in biomedical research. Of particular interest for therapeutic applications is the ability of oscillating microbubbles to promote both cellular and tissue membrane permeabilisation and to improve the distribution of therapeutic agents in tissue through extravasation and convective transport. The mechanisms that underpin the interaction between cavitating agents and tissues are, however, still poorly understood. One challenge is the practical difficulty involved in performing optical microscopy and acoustic emissions monitoring simultaneously in a biologically compatible environment. Here we present and characterise a microfluidic layered acoustic resonator (μLAR) developed for simultaneous ultrasound exposure, acoustic emissions monitoring, and microscopy of biological samples. The μLAR facilitates in vitro ultrasound experiments in which measurements of microbubble dynamics, microstreaming velocity fields, acoustic emissions, and cell-microbubble interactions can be performed simultaneously. The device and analyses presented provide a means of performing mechanistic in vitro studies that may benefit the design of predictable and effective cavitation-based ultrasound treatments.
机译:超声诱导的空化作用对生物结构的影响的研究是生物医学研究的活跃领域。对于治疗应用特别感兴趣的是振荡微泡促进细胞和组织膜通透性以及通过外渗和对流运输来改善治疗剂在组织中的分布的能力。然而,对空化剂与组织之间相互作用的基础机制了解甚少。一个挑战是在生物相容性环境中同时进行光学显微镜和声发射监测的实际困难。在这里,我们介绍并表征为同时进行超声暴露,声发射监测和生物样品显微镜检查而开发的微流层声谐振器(μLAR)。 μLAR促进了体外超声实验,其中可以同时执行微泡动力学,微流速度场,声发射和细胞-微泡相互作用的测量。提出的设备和分析提供了一种进行机械体外研究的方法,可能有益于基于空化的可预测和有效超声治疗的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号