首页> 美国卫生研究院文献>Biophysical Journal >A Preferred Curvature-Based Continuum Mechanics Framework for Modeling Embryogenesis
【2h】

A Preferred Curvature-Based Continuum Mechanics Framework for Modeling Embryogenesis

机译:首选的基于曲率的连续体力学框架建模胚胎发生

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanics plays a key role in the development of higher organisms. However, understanding this relationship is complicated by the difficulty of modeling the link between local forces generated at the subcellular level and deformations observed at the tissue and whole-embryo levels. Here we propose an approach first developed for lipid bilayers and cell membranes, in which force-generation by cytoskeletal elements enters a continuum mechanics formulation for the full system in the form of local changes in preferred curvature. This allows us to express and solve the system using only tissue strains. Locations of preferred curvature are simply related to products of gene expression. A solution, in that context, means relaxing the system’s mechanical energy to yield global morphogenetic predictions that accommodate a tendency toward the local preferred curvature, without a need to explicitly model force-generation mechanisms at the molecular level. Our computational framework, which we call SPHARM-MECH, extends a 3D spherical harmonics parameterization known as SPHARM to combine this level of abstraction with a sparse shape representation. The integration of these two principles allows computer simulations to be performed in three dimensions on highly complex shapes, gene expression patterns, and mechanical constraints. We demonstrate our approach by modeling mesoderm invagination in the fruit-fly embryo, where local forces generated by the acto-myosin meshwork in the region of the future mesoderm lead to formation of a ventral tissue fold. The process is accompanied by substantial changes in cell shape and long-range cell movements. Applying SPHARM-MECH to whole-embryo live imaging data acquired with light-sheet microscopy reveals significant correlation between calculated and observed tissue movements. Our analysis predicts the observed cell shape anisotropy on the ventral side of the embryo and suggests an active mechanical role of mesoderm invagination in supporting the onset of germ-band extension.
机译:力学在高等生物的发展中起着关键作用。但是,由于难以对在亚细胞水平上产生的局部力与在组织和全胚水平上观察到的变形之间的联系进行建模,因此很难理解这种关系。在这里,我们提出一种首先针对脂质双层和细胞膜开发的方法,其中通过细胞骨架元素产生的力以优选曲率的局部变化形式进入整个系统的连续力学公式。这使我们可以仅使用组织应变来表达和求解系统。优选曲率的位置仅与基因表达的产物有关。在这种情况下,解决方案意味着放宽系统的机械能以产生全局形态发生预测,以适应朝着局部优选曲率的趋势,而无需在分子水平上显式地建模力产生机理。我们称为SPHARM-MECH的计算框架扩展了称为SPHARM的3D球面谐波参数化,以将这种抽象级别与稀疏形状表示相结合。这两个原理的集成使得可以在高度复杂的形状,基因表达模式和机械约束条件的三个维度上执行计算机仿真。我们通过对果蝇胚胎中胚层内陷进行建模来证明我们的方法,其中在未来中胚层区域中由肌动球蛋白网状结构产生的局部力导致腹侧组织折叠的形成。该过程伴随着细胞形状和远距离细胞运动的实质性变化。将SPHARM-MECH应用于通过光片显微镜获得的全胚实时成像数据,可以发现计算出的组织运动与观察到的组织运动之间存在显着相关性。我们的分析预测了在胚胎腹侧观察到的细胞形状各向异性,并提出了中胚层内陷在支持胚带扩展发作方面的积极机械作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号