首页> 美国卫生研究院文献>Biophysical Journal >Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells
【2h】

Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells

机译:对角扫描光片显微镜用于粘附细胞的快速体积成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In subcellular light-sheet fluorescence microscopy (LSFM) of adherent cells, glass substrates are advantageously rotated relative to the excitation and emission light paths to avoid glass-induced optical aberrations. Because cells are spread across the sample volume, three-dimensional imaging requires a light-sheet with a long propagation length, or rapid sample scanning. However, the former degrades axial resolution and/or optical sectioning, while the latter mechanically perturbs sensitive biological specimens on pliant biomimetic substrates (e.g., collagen and basement membrane). Here, we use aberration-free remote focusing to diagonally sweep a narrow light-sheet along the sample surface, enabling multicolor imaging with high spatiotemporal resolution. Further, we implement a dithered Gaussian lattice to minimize sample-induced illumination heterogeneities, significantly improving signal uniformity. Compared with mechanical sample scanning, we drastically reduce sample oscillations, allowing us to achieve volumetric imaging at speeds of up to 3.5 Hz for thousands of Z-stacks. We demonstrate the optical performance with live-cell imaging of microtubule and actin cytoskeletal dynamics, phosphoinositide signaling, clathrin-mediated endocytosis, polarized blebbing, and endocytic vesicle sorting. We achieve three-dimensional particle tracking of clathrin-associated structures with velocities up to 4.5 μm/s in a dense intracellular environment, and show that such dynamics cannot be recovered reliably at lower volumetric image acquisition rates using experimental data, numerical simulations, and theoretical modeling.
机译:在贴壁细胞的亚细胞光片荧光显微镜(LSFM)中,玻璃基板有利地相对于激发和发射光路旋转,以避免玻璃引起的光学像差。由于细胞分布在整个样品体积中,因此三维成像需要具有长传播长度的光片,或者需要快速进行样品扫描。然而,前者降低了轴向分辨率和/或光学切片,而后者则机械地干扰了柔顺的仿生基质(例如胶原蛋白和基底膜)上的敏感生物样品。在这里,我们使用无像差远程聚焦功能沿对角线扫描样品表面上的窄光片,从而实现具有高时空分辨率的多色成像。此外,我们实现了抖动的高斯晶格,以最大程度地减少样本诱导的照明异质性,从而显着提高信号均匀性。与机械样品扫描相比,我们极大地减少了样品振荡,从而使我们可以对成千上万个Z形堆栈进行高达3.5 Hz的速度的体积成像。我们证明了活细胞成像的微管和肌动蛋白细胞骨架动力学,磷酸肌醇信号,网格蛋白介导的内吞作用,极化起泡和内吞囊泡分选的光学性能。我们在密集的细胞内环境中实现了网格蛋白相关结构的三维粒子跟踪,其速度高达4.5μm/ s,并表明使用实验数据,数值模拟和理论方法无法在较低的体积图像采集速率下可靠地恢复这种动力学。造型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号