首页> 美国卫生研究院文献>Biophysical Journal >Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics
【2h】

Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics

机译:耳蜗内Scala介质压力测量:对耳蜗力学模型的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models.
机译:主动耳蜗的模型建立在潜在的被动机制上。被动式耳蜗力学基于耳蜗的物理和几何特性以及耳蜗隔板与周围液体之间的流体-组织相互作用。尽管已经在主动和被动耳蜗中研究了基底膜和鼓膜中的流体之间的组织相互作用,但尚无关于在鼓膜的media部(SM)侧上的组织相互作用的实验数据。划分。为此,我们使用微压传感器在靠近分区的SM中测量了诱发声音的耳蜗内压。所有SM压力数据均来自被动耳蜗,可能是因为SM耳蜗造口术导致了内耳蜗电位的丧失。因此,这些实验是对被动耳蜗力学的研究。靠近组织的SM压力显示出峰和刻痕的模式,这可以解释为快速和慢速(即行波)压力模式之间的相互作用。在几只动物中,在同一耳蜗中测量SM和ST压力。与以前的研究相似,ST压力主要由在测量位置的最佳频率附近的激励频率下的慢行波模式和高于最佳频率的快模式主导。 SM和ST之间的反对称压力支持经典的单分区耳蜗模型,或支持分区之间紧密耦合的双分区模型。根据SM和ST压力,我们计算了慢速和快速模式,根据主动ST压力,我们将被动发现推算到了主动情况。根据耳蜗模型的预测,从SM和ST数据估计的被动慢速模式本质上是低通的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号