首页> 美国卫生研究院文献>Biophysical Journal >Live-Cell Superresolution Imaging by Pulsed STED Two-Photon Excitation Microscopy
【2h】

Live-Cell Superresolution Imaging by Pulsed STED Two-Photon Excitation Microscopy

机译:脉冲STED双光子激发显微镜对活细胞的超分辨率成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of one-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small subcellular compartments of neurons. Stimulated emission depletion (STED) microscopy is a superresolution imaging modality that overcomes the resolution limit imposed by diffraction and allows fluorescence imaging of nanoscale features. Here, we describe the design and operation of a superresolution two-photon microscope using pulsed excitation and STED lasers. We examine the depth dependence of STED imaging in acute tissue slices and find enhancement of 2P resolution ranging from approximately fivefold at 20 μm to approximately twofold at 90-μm deep. The depth dependence of resolution is found to be consistent with the depth dependence of depletion efficiency, suggesting resolution is limited by STED laser propagation through turbid tissue. Finally, we achieve live imaging of dendritic spines with 60-nm resolution and demonstrate that our technique allows accurate quantification of neuronal morphology up to 30-μm deep in living brain tissue.
机译:双光子激光扫描显微镜(2PLSM)可以在厚厚的生物样品中进行荧光成像,在这些样品中,吸收和散射通常会降低单光子成像方法的分辨率和信号收集能力。常规2PLSM的空间分辨率受到衍射的限制,并且2PLSM中用于激发的近红外波长妨碍了神经元许多小亚细胞区室的精确成像。激发发射耗尽(STED)显微镜是一种超分辨率成像方式,它克服了衍射所施加的分辨率极限,并允许对纳米级特征进行荧光成像。在这里,我们描述了使用脉冲激发和STED激光的超分辨率两光子显微镜的设计和操作。我们检查了急性组织切片中STED成像的深度依赖性,发现2P分辨率的增强范围从20μm处的大约五倍到90μm深处的大约两倍。发现分辨率的深度依赖性与耗尽效率的深度依赖性一致,这表明分辨率受STED激光通过混浊组织的传播的限制。最后,我们以60 nm的分辨率实现了树突棘的实时成像,并证明了我们的技术可以对活脑组织深达30μm的神经元形态进行精确定量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号