首页> 美国卫生研究院文献>Biophysical Journal >Mixed Exciton–Charge-Transfer States in Photosystem II: Stark Spectroscopy on Site-Directed Mutants
【2h】

Mixed Exciton–Charge-Transfer States in Photosystem II: Stark Spectroscopy on Site-Directed Mutants

机译:光系统II中的混合激子-电荷转移态:定点突变体的斯塔克光谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We investigated the electronic structure of the photosystem II reaction center (PSII RC) in relation to the light-induced charge separation process using Stark spectroscopy on a series of site-directed PSII RC mutants from the cyanobacterium Synechocystis sp. PCC 6803. The site-directed mutations modify the protein environment of the cofactors involved in charge separation (PD1, PD2, ChlD1, and PheD1). The results demonstrate that at least two different exciton states are mixed with charge-transfer (CT) states, yielding exciton states with CT character: (PD2δ+PD1δChlD1)673nm and (ChlD1δ+PheD1δ)681nm (where the subscript indicates the wavelength of the electronic transition). Moreover, the CT state PD2+PD1 acquires excited-state character due to its mixing with an exciton state, producing (PD2+PD1)δ684nm. We conclude that the states that initiate charge separation are mixed exciton-CT states, and that the degree of mixing between exciton and CT states determines the efficiency of charge separation. In addition, the results reveal that the pigment-protein interactions fine-tune the energy of the exciton and CT states, and hence the mixing between these states. This mixing ultimately controls the selection and efficiency of a specific charge separation pathway, and highlights the capacity of the protein environment to control the functionality of the PSII RC complex.
机译:我们调查了光系统II反应中心(PSII RC)的电子结构与使用Stark光谱对蓝细菌蓝藻(Synechocystis sp。)的一系列定点PSII RC突变体的光诱导电荷分离过程的关系。 PCC6803。定点突变修饰了参与电荷分离的辅助因子(PD1,PD2,ChlD1和PheD1)的蛋白质环境。结果表明,至少两种不同的激子状态与电荷转移(CT)状态混合,产生具有CT特征的激子状态:(PD2 δ + PD1 δ ChlD1) 673nm和(ChlD1 δ + PheD1 δ - 681nm(下标表示电子跃迁的波长)。此外,CT状态PD2 + PD1 -由于其与激子状态混合而获得激发态特性,从而产生(PD2 + PD1 < sup>-δ 684nm。我们得出的结论是,引发电荷分离的状态是混合激子-CT状态,并且激子和CT状态之间的混合程度决定了电荷分离的效率。此外,结果表明,色素-蛋白质相互作用可微调激子和CT状态的能量,从而可微调这些状态之间的混合。这种混合最终控制了特定电荷分离途径的选择和效率,并突出了蛋白质环境控制PSII RC复合物功能的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号