首页> 美国卫生研究院文献>Biophysical Journal >Neck-Linker Docking Coordinates the Kinetics of Kinesins Heads
【2h】

Neck-Linker Docking Coordinates the Kinetics of Kinesins Heads

机译:颈部连接器对接可协调Kinesin头部的动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Conventional kinesin is a two-headed homodimeric motor protein, which is able to walk along microtubules processively by hydrolyzing ATP. Its neck linkers, which connect the two motor domains and can undergo a docking/undocking transition, are widely believed to play the key role in the coordination of the chemical cycles of the two motor domains and, consequently, in force production and directional stepping. Although many experiments, often complemented with partial kinetic modeling of specific pathways, support this idea, the ultimate test of the viability of this hypothesis requires the construction of a complete kinetic model. Considering the two neck linkers as entropic springs that are allowed to dock to their head domains, and incorporating only the few most relevant kinetic and structural properties of the individual heads, we develop here the first, to our knowledge, detailed, thermodynamically consistent model of kinesin that can 1), explain the cooperation of the heads (including their gating mechanisms) during walking, and 2), reproduce much of the available experimental data (speed, dwell-time distribution, randomness, processivity, hydrolysis rate, etc.) under a wide range of conditions (nucleotide concentrations, loading force, neck-linker length and composition, etc.). Besides revealing the mechanism by which kinesin operates, our model also makes it possible to look into the experimentally inaccessible details of the mechanochemical cycle and predict how certain changes in the protein affect its motion.
机译:常规的驱动蛋白是一种双头同二聚体运动蛋白,能够通过水解ATP逐步地沿着微管运动。人们普遍认为其颈部连接器连接两个马达区域,并可以进行对接/脱离对接转变,在两个马达区域的化学循环的协调中,因此在力产生和方向步进中起着关键作用。尽管许多实验(通常还辅以特定途径的部分动力学建模)支持了这一想法,但要对该假设的可行性进行最终检验,则需要构建完整的动力学模型。考虑到两个颈部连接器是熵弹簧,可以停靠在其头部区域,并且仅合并了各个头部的几个最相关的动力学和结构特性,据我们所知,这里我们首先开发出详细的,热力学一致的模型驱动蛋白可以:1),解释行走过程中头部的配合(包括其门控机制),以及2),重现许多可用的实验数据(速度,驻留时间分布,随机性,可加工性,水解速率等)。在各种各样的条件下(核苷酸浓度,负载力,颈部接头长度和组成等)。除了揭示驱动蛋白的作用机理外,我们的模型还使我们有可能研究机械化学循环的实验上难以接近的细节,并预测蛋白质中的某些变化如何影响其运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号