首页> 美国卫生研究院文献>Biophysical Journal >Unsteady Motion Finite Reynolds Numbers and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag
【2h】

Unsteady Motion Finite Reynolds Numbers and Wall Effect on Vorticella convallaria Contribute Contraction Force Greater than the Stokes Drag

机译:非定常运动有限雷诺数以及对室壁铃虫的壁效应导致收缩力大于斯托克斯阻力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Contraction of Vorticella convallaria, a sessile ciliated protozoan, is completed within a few milliseconds and results in a retraction of its cell body toward the substratum by coiling its stalk. Previous studies have modeled the cell body as a sphere and assumed a drag force that satisfies Stokes' law. However, the contraction-induced flow of the medium is transient and bounded by the substrate, and the maximum Reynolds number is larger than unity. Thus, calculations of contractile force from the drag force are incomplete. In this study, we analyzed fluid flow during contraction by the particle tracking velocimetry and computational fluid dynamics simulations to estimate the contractile force. Particle paths show that the induced flow is limited by the substrate. Simulation-based force estimates suggest that the combined effect of the flow unsteadiness, the finite Reynolds number, and the substrate comprises 35% of the total force. The work done in the early stage of contraction and the maximum power output are similar regardless of the medium viscosity. These results suggest that, during the initial development of force, V. convallaria uses a common mechanism for performing mechanical work irrespective of viscous loading conditions.
机译:无柄纤毛原生动物铃虫Vorticella convallaria的收缩在几毫秒内完成,并通过盘绕茎杆而使其细胞向着基底收缩。先前的研究已将细胞体建模为球形,并假定了满足斯托克斯定律的阻力。但是,收缩引起的介质流动是短暂的,并受底物限制,并且最大雷诺数大于1。因此,根据阻力计算收缩力是不完整的。在这项研究中,我们通过粒子跟踪测速法和计算流体动力学模拟来分析收缩过程中的流体流动,以估计收缩力。粒子路径表明,诱导流受基材限制。基于模拟的力估计表明,流动不稳定,有限的雷诺数和基体的组合效应占总力的35%。无论介质粘度如何,收缩初期的功和最大功率输出都是相似的。这些结果表明,在力的最初发展过程中,铃兰弧菌使用一种通用的机制来执行机械功,而与粘性载荷条件无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号