首页> 美国卫生研究院文献>Biophysical Journal >Connectivity of Photosystem II Is the Physical Basis of Retrapping in Photosynthetic Thermoluminescence
【2h】

Connectivity of Photosystem II Is the Physical Basis of Retrapping in Photosynthetic Thermoluminescence

机译:光系统II的连通性是光合作用热致发光中重新捕获的物理基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Energy transfer between photosystem II (PSII) centers is known from previous fluorescence studies. We have studied the theoretical consequences of energetic connectivity of PSII centers on photosynthetic thermoluminescence (TL) and predict that connectivity affects the TL Q band. First, connectivity is expected to make the Q band wider and more symmetric than an ideal first-order TL band. Second, the presence of closed PSII centers in an energetically connected group of PSII centers is expected to lower the probability that an exciton originating in a recombination reaction becomes retrapped. The latter effect would shift the Q band toward lower temperature, and the shift would be greater the higher the percentage of closed PSII centers at the beginning of the measurement. These effects can be generalized as second-order effects, as they make the Q band resemble the second-order TL bands obtained from semiconducting solids. We applied the connected-units model of chlorophyll fluorescence to derive equations for quantifying the second-order effects in TL. To test the effect of the initial proportion of closed reaction centers, we measured the Q band with different intensities of the excitation flash and found that the peak position changed by 2.5°C toward higher temperature when the flash intensity was lowered from saturating to 0.39% of saturating. The result shows that energy transfer between reaction centers of PSII forms the physical basis of retrapping in photosynthetic TL. The second-order effects partially explain the deviation of the form of the Q band from ideal first-order TL.
机译:从先前的荧光研究中可以知道光系统II(PSII)中心之间的能量转移。我们已经研究了PSII能量连通性的理论后果,其中心位于光合作用热发光(TL)上,并预测连通性会影响TL Q波段。首先,与理想的一阶TL波段相比,连通性有望使Q波段更宽,更对称。其次,在能量上相连的一组PSII中心中存在封闭的PSII中心,这有望降低源自重组反应的激子被重新捕获的可能性。后者的影响将使Q波段向更低的温度移动,并且在测量开始时,封闭的PSII中心的百分比越高,该移动越大。这些效应可以概括为二阶效应,因为它们使Q波段类似于从半导体固体获得的二阶TL波段。我们应用了叶绿素荧光的连接单元模型来推导用于量化TL中二级效应的方程式。为了测试封闭反应中心初始比例的影响,我们测量了激发闪光强度不同的Q谱带,发现当闪光强度从饱和降低到0.39%时,峰位置向高温升高了2.5°C。饱和。结果表明,PSII反应中心之间的能量转移形成了光合作用TL中重捕的物理基础。二阶效应部分地解释了Q波段形式与理想一阶TL的偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号