首页> 美国卫生研究院文献>Biophysical Journal >Role of Solvent on Protein-Matrix Coupling in MbCO Embedded in Water-Saccharide Systems: A Fourier Transform Infrared Spectroscopy Study
【2h】

Role of Solvent on Protein-Matrix Coupling in MbCO Embedded in Water-Saccharide Systems: A Fourier Transform Infrared Spectroscopy Study

机译:溶剂在水-糖体系中嵌入的MbCO中蛋白质-基质偶联的作用:傅立叶变换红外光谱研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Embedding protein in sugar systems of low water content enables one to investigate the protein dynamic-structure function in matrixes whose rigidity is modulated by varying the content of residual water. Accordingly, studying the dynamics and structure thermal evolution of a protein in sugar systems of different hydration constitutes a tool for disentangling solvent rigidity from temperature effects. Furthermore, studies performed using different sugars may give information on how the detailed composition of the surrounding solvent affects the internal protein dynamics and structural evolution. In this work, we compare Fourier transform infrared spectroscopy measurements (300–20 K) on MbCO embedded in trehalose, sucrose, maltose, raffinose, and glucose matrixes of different water content. At all the water contents investigated, the protein-solvent coupling was tighter in trehalose than in the other sugars, thus suggesting a molecular basis for the trehalose peculiarity. These results are in line with the observation that protein-matrix phase separation takes place in lysozyme-lactose, whereas it is absent in lysozyme-trehalose systems; indeed, these behaviors may respectively be due to the lack or presence of suitable water-mediated hydrogen-bond networks, which match the protein surface to the surroundings. The above processes might be at the basis of pattern recognition in crowded living systems; indeed, hydration shells structural and dynamic matching is first needed for successful come together of interacting biomolecules.
机译:将蛋白质嵌入低水含量的糖系统中,可以研究基质中蛋白质的动态结构功能,这些基质的刚性通过改变残留水的含量来调节。因此,研究蛋白质在不同水合作用的糖体系中的动力学和结构的热演化构成了使溶剂刚性与温度效应脱开的工具。此外,使用不同糖类进行的研究可能会提供有关周围溶剂的详细组成如何影响内部蛋白质动力学和结构演变的信息。在这项工作中,我们比较了嵌入在不同含水量的海藻糖,蔗糖,麦芽糖,棉子糖和葡萄糖基质中的MbCO的傅里叶变换红外光谱测量(300–20 K)。在所研究的所有水分含量下,海藻糖中的蛋白质-溶剂偶联均比其他糖类中的紧密,因此表明了海藻糖特殊性的分子基础。这些结果与在溶菌酶-乳糖中发生蛋白质-基质相分离的观察结果相符,而在溶菌酶-海藻糖系统中则不存在。实际上,这些行为可能分别是由于缺乏或存在合适的水介导的氢键网络,该网络使蛋白质表面与周围环境相匹配。以上过程可能是在拥挤的生活系统中进行模式识别的基础;实际上,首先需要水合壳的结构和动态匹配,才能使相互作用的生物分子成功结合在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号