首页> 美国卫生研究院文献>Biophysical Journal >Ion Transport through Membrane-Spanning Nanopores Studied by Molecular Dynamics Simulations and Continuum Electrostatics Calculations
【2h】

Ion Transport through Membrane-Spanning Nanopores Studied by Molecular Dynamics Simulations and Continuum Electrostatics Calculations

机译:通过跨膜纳米孔离子迁移的分子动力学模拟和连续静电学计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Narrow hydrophobic regions are a common feature of biological channels, with possible roles in ion-channel gating. We study the principles that govern ion transport through narrow hydrophobic membrane pores by molecular dynamics simulation of model membranes formed of hexagonally packed carbon nanotubes. We focus on the factors that determine the energetics of ion translocation through such nonpolar nanopores and compare the resulting free-energy barriers for pores with different diameters corresponding to the gating regions in closed and open forms of potassium channels. Our model system also allows us to compare the results from molecular dynamics simulations directly to continuum electrostatics calculations. Both simulations and continuum calculations show that subnanometer wide pores pose a huge free-energy barrier for ions, but a small increase in the pore diameter to ∼1 nm nearly eliminates that barrier. We also find that in those wider channels the ion mobility is comparable to that in the bulk phase. By calculating local electrostatic potentials, we show that the long range Coulomb interactions of ions are strongly screened in the wide water-filled channels. Whereas continuum calculations capture the overall energetics reasonably well, the local water structure, which is not accounted for in this model, leads to interesting effects such as the preference of hydrated ions to move along the pore wall rather than through the center of the pore.
机译:狭窄的疏水区是生物通道的共同特征,可能在离子通道门控中起作用。我们通过分子动力学模拟研究由六角形堆积的碳纳米管形成的模型膜,从而控制通过狭窄疏水膜孔的离子迁移的原理。我们集中于确定离子通过此类非极性纳米孔的能量的因素,并比较所产生的自由能垒,该自由能垒的直径对应于封闭和开放形式的钾通道门控区域的不同直径。我们的模型系统还允许我们将分子动力学模拟的结果直接与连续静电学计算进行比较。模拟和连续计算均表明,亚纳米宽的孔对离子构成了巨大的自由能势垒,但是孔径增加到约1 nm很小,几乎消除了该势垒。我们还发现,在那些较宽的通道中,离子迁移率可与体相中的离子迁移率相媲美。通过计算局部静电势,我们表明在宽泛的充满水的通道中强烈屏蔽了长距离的离子库仑相互作用。尽管连续介质计算可以很好地捕获总体能量,但是该模型中未考虑的局部水结构会产生有趣的效果,例如,水合离子倾向于沿孔壁而不是通过孔中心移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号