首页> 美国卫生研究院文献>Biophysical Journal >Studies of Proton Translocations in Biological Systems: Simulating Proton Transport in Carbonic Anhydrase by EVB-Based Models
【2h】

Studies of Proton Translocations in Biological Systems: Simulating Proton Transport in Carbonic Anhydrase by EVB-Based Models

机译:生物系统中质子转运的研究:通过基于EVB的模型模拟碳酸酐酶中的质子转运

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Proton transport (PTR) processes play a major role in bioenergetics and thus it is important to gain a molecular understanding of these processes. At present the detailed description of PTR in proteins is somewhat unclear and it is important to examine different models by using well-defined experimental systems. One of the best benchmarks is provided by carbonic anhydrase III (CA III), because this is one of the few systems where we have a clear molecular knowledge of the rate constant of the PTR process and its variation upon mutations. Furthermore, this system transfers a proton between several water molecules, thus making it highly relevant to a careful examination of the “proton wire” concept. Obtaining a correlation between the structure of this protein and the rate of the PTR process should help to discriminate between alternative models and to give useful clues about PTR processes in other systems. Obviously, obtaining such a correlation requires a correct representation of the “chemistry” of PTR between different donors and acceptors, as well as the ability to evaluate the free energy barriers of charge transfer in proteins, and to simulate long-time kinetic processes. The microscopic empirical valence bond (Warshel, A., and R. M. Weiss. 1980. J. Am. Chem. Soc. 102:6218–6226; and Åqvist, J., and A. Warshel. 1993. Chem. Rev. 93:2523–2544) provides a powerful way for representing the chemistry and evaluating the free energy barriers, but it cannot be used with the currently available computer times in direct simulation of PTR with significant activation barriers. Alternatively, one can reduce the empirical valence bond (EVB) to the modified Marcus' relationship and use semimacroscopic electrostatic calculations plus a master equation to determine the PTR kinetics (Sham, Y., I. Muegge, and A. Warshel. 1999. Proteins. 36:484–500). However, such an approximation does not provide a rigorous multisite kinetic treatment. Here we combine the useful ingredients of both approaches and develop a simplified EVB effective potential that treats explicitly the chain of donors and acceptors while considering implicitly the rest of the protein/solvent system. This approach can be used in Langevin dynamics simulations of long-time PTR processes. The validity of our new simplified approach is demonstrated first by comparing its Langevin dynamics results for a PTR along a chain of water molecules in water to the corresponding molecular dynamics simulations of the fully microscopic EVB model. This study examines dynamics of both models in cases of low activation barriers and the dependence of the rate on the energetics for cases with moderate barriers. The study of the dependence on the activation barrier is next extended to the range of higher barriers, demonstrating a clear correlation between the barrier height and the rate constant. The simplified EVB model is then examined in studies of the PTR in carbonic anhydrase III, where it reproduces the relevant experimental results without the use of any parameter that is specifically adjusted to fit the energetics or dynamics of the reaction in the protein. We also validate the conclusions obtained previously from the EVB-based modified Marcus' relationship. It is concluded that this approach and the EVB-based model provide a reliable, effective, and general tool for studies of PTR in proteins. Finally in view of the behavior of the simulated result, in both water and the CA III, we conclude that the rate of PTR in proteins is determined by the electrostatic energy of the transferred proton as long as this energy is higher than a few kcal/mol.
机译:质子传输(PTR)过程在生物能学中起主要作用,因此重要的是要对这些过程进行分子理解。目前,蛋白质中PTR的详细描述尚不清楚,因此,使用定义明确的实验系统检查不同的模型非常重要。碳酸酐酶III(CA III)提供了最好的基准之一,因为这是我们对PTR过程的速率常数及其在突变时的变异具有清晰分子知识的少数系统之一。此外,该系统在多个水分子之间转移质子,从而使其与仔细检查“质子线”概念高度相关。获得这种蛋白质的结构和PTR过程的速率之间的相关性应该有助于区分替代模型,并提供有关其他系统中PTR过程的有用线索。显然,要获得这种相关性,需要正确表示不同供体和受体之间的PTR“化学”,以及评估蛋白质中电荷转移的自由能垒和模拟长时间动力学过程的能力。微观经验价键(Warshel,A.和RM Weiss。1980. J. Am。Chem。Soc。102:6218-6226;以及Åqvist,J.和A. Warshel。1993. Chem。Rev. 93: 2523–2544)提供了一种强大的方法来表示化学反应和评估自由能垒,但不能将其与当前可用的计算机时间一起用于直接模拟具有显着激活垒的PTR。或者,可以将经验价键(EVB)简化为修改后的Marcus关系,并使用半宏观静电计算和一个主方程来确定PTR动力学(Sham,Y.,I. Muegge和A. Warshel。1999。 36:484–500)。但是,这样的近似不能提供严格的多部位动力学处理。在这里,我们结合了这两种方法的有用成分,并开发了一种简化的EVB有效潜能,该潜能明确地对待了供体和受体链,同时隐含地考虑了蛋白质/溶剂系统的其余部分。此方法可用于长时间PTR过程的Langevin动力学仿真。首先,通过将其沿水中水分子链的PTR的Langevin动力学结果与全微观EVB模型的相应分子动力学仿真进行比较,证明了我们新简化方法的有效性。这项研究研究了在低激活障碍情况下两种模型的动力学以及在中等障碍情况下速率对能量学的依赖性。接下来,关于激活势垒的依赖性的研究将扩展到更高的势垒范围,这表明势垒高度与速率常数之间存在明显的相关性。然后,在研究碳酸酐酶III中的PTR时,检查了简化的EVB模型,在此模型中,无需使用为调节蛋白质的能量或动力学动态而专门调整的任何参数,即可再现相关的实验结果。我们还验证了先前从基于EVB的修改后的Marcus关系获得的结论。结论是,该方法和基于EVB的模型为研究蛋白质中的PTR提供了可靠,有效且通用的工具。最后,鉴于模拟结果的行为,在水和CA III中,我们得出结论,蛋白质中的PTR速率由转移质子的静电能决定,只要该能量高于几千卡/摩尔

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号