首页> 美国卫生研究院文献>Biophysical Journal >Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM).
【2h】

Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM).

机译:频域中的动态荧光各向异性成像显微镜(rFLIM)。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe a novel variant of fluorescence lifetime imaging microscopy (FLIM), denoted anisotropy-FLIM or rFLIM, which enables the wide-field measurement of the anisotropy decay of fluorophores on a pixel-by-pixel basis. We adapted existing frequency-domain FLIM technology for rFLIM by introducing linear polarizers in the excitation and emission paths. The phase delay and intensity ratios (AC and DC) between the polarized components of the fluorescence signal are recorded, leading to estimations of rotational correlation times and limiting anisotropies. Theory is developed that allows all the parameters of the hindered rotator model to be extracted from measurements carried out at a single modulation frequency. Two-dimensional image detection with a sensitive CCD camera provides wide-field imaging of dynamic depolarization with parallel interrogation of different compartments of a complex biological structure such as a cell. The concepts and technique of rFLIM are illustrated with a fluorophore-solvent (fluorescein-glycerol) system as a model for isotropic rotational dynamics and with bacteria expressing enhanced green fluorescent protein (EGFP) exhibiting depolarization due to homotransfer of electronic excitation energy (emFRET). The frequency-domain formalism was extended to cover the phenomenon of emFRET and yielded data consistent with a concentration depolarization mechanism resulting from the high intracellular concentration of EGFP. These investigations establish rFLIM as a powerful tool for cellular imaging based on rotational dynamics and molecular proximity.
机译:我们描述了荧光寿命成像显微镜(FLIM)的一种新型变体,称为各向异性FLIM或rFLIM,它能够在逐像素的基础上实现荧光团的各向异性衰减的宽域测量。通过在激发和发射路径中引入线性偏振器,我们将现有的频域FLIM技术应用于rFLIM。记录荧光信号偏振分量之间的相位延迟和强度比(AC和DC),从而估计旋转相关时间和极限各向异性。发展了一种理论,该理论允许从单个调制频率下执行的测量中提取受阻转子模型的所有参数。使用灵敏的CCD相机进行的二维图像检测可对动态去极化进行大范围成像,同时对复杂生物结构(例如细胞)的不同部分进行平行询问。 rFLIM的概念和技术用荧光溶剂(荧光素-甘油)系统作为各向同性旋转动力学的模型来说明,并且表达增强的绿色荧光蛋白(EGFP)的细菌由于电子激发能的均质转移(emFRET)而表现出去极化作用。频域形式主义扩展到涵盖emFRET现象,并产生与高细胞内EGFP浓度导致的浓度去极化机制一致的数据。这些研究将rFLIM建立为基于旋转动力学和分子接近度进行细胞成像的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号