首页> 美国卫生研究院文献>Biomolecules >Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain
【2h】

Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain

机译:谷氨酸代谢在正常和高氨氮脑维持氮稳态中的重要作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels.
机译:谷氨酸以平均浓度(通常为10–12 mM)存在于大脑中,远远超过其他氨基酸。在大脑中含谷氨酸的囊泡中,谷氨酸的浓度甚至可能超过100 mM。然而,由于谷氨酸是一种主要的兴奋性神经递质,因此必须将这种氨基酸在脑细胞外液中的浓度保持在低水平,通常为µM。谷氨酸在不同脑区的明显梯度:囊泡>胞浆/线粒体>细胞外液证明谷氨酸转运蛋白的非凡功效以及严格控制脑内明确的细胞和亚细胞区隔谷氨酸分解代谢和合成的酶。去除谷氨酸和氨的主要途径是通过谷氨酰胺合成酶(谷氨酸氨连接酶)反应。谷氨酸也通过谷氨酸脱羧酶的作用转化为抑制性神经递质γ-氨基丁酸酯(GABA)而被去除。另一方面,通过谷氨酰胺酶和各种α-酮戊二酸酯连接的氨基转移酶(尤其是天冬氨酸氨基转移酶以及支链氨基转移酶的线粒体和胞质形式)维持脑谷氨酸水平。尽管谷氨酸脱氢酶反应是可自由逆转的,但由于氨作为谷氨酰胺的快速去除,体内的谷氨酸脱氢酶反应的方向主要是向谷氨酸分解代谢而不是向谷氨酸的净合成,即使在高氨血症条件下也是如此。在高氨血症期间,脑中谷氨酰胺含量大幅增加,但是谷氨酸盐和α-酮戊二酸的水平只有很小的变化。因此,在高氨血症期间谷氨酸向谷氨酰胺的引导导致5-碳单元的净合成。 5-碳单元的这种增加部分地通过氨诱导的抗过氧化物酶丙酮酸羧化酶的刺激来实现。在这里,我们建议谷氨酸可能构成针对脑胺和氨氮变化的缓冲液或壁垒。尽管简要讨论了谷氨酸转运蛋白,但本综述的主要重点是在正常和高氨血症条件下有助于维持谷氨酸水平的酶学。还将重点关注谷氨酸在神经元和星形胶质细胞之间的谷氨酰胺-谷氨酸和谷氨酰胺-GABA神经递质循环中的核心作用。最后,我们提供了与脑谷氨酸水平改变有关的神经病理学的简要和选择性的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号