首页> 美国卫生研究院文献>Biomimetics >Bioinspired Histidine–Zn2+ Coordination for Tuning the Mechanical Properties of Self-Healing Coiled Coil Cross-Linked Hydrogels
【2h】

Bioinspired Histidine–Zn2+ Coordination for Tuning the Mechanical Properties of Self-Healing Coiled Coil Cross-Linked Hydrogels

机译:生物启发的组氨酸-Zn2 +配位可调节自愈螺旋缠绕交联水凝胶的力学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural biopolymeric materials often possess properties superior to their individual components. In mussel byssus, reversible histidine (His)–metal coordination is a key feature, which mediates higher-order self-assembly as well as self-healing. The byssus structure, thus, serves as an excellent natural blueprint for the development of self-healing biomimetic materials with reversibly tunable mechanical properties. Inspired by byssal threads, we bioengineered His–metal coordination sites into a heterodimeric coiled coil (CC). These CC-forming peptides serve as a noncovalent cross-link for poly(ethylene glycol)-based hydrogels and participate in the formation of higher-order assemblies via intermolecular His–metal coordination as a second cross-linking mode. Raman and circular dichroism spectroscopy revealed the presence of α-helical, Zn2+ cross-linked aggregates. Using rheology, we demonstrate that the hydrogel is self-healing and that the addition of Zn2+ reversibly switches the hydrogel properties from viscoelastic to elastic. Importantly, using different Zn2+:His ratios allows for tuning the hydrogel relaxation time over nearly three orders of magnitude. This tunability is attributed to the progressive transformation of single CC cross-links into Zn2+ cross-linked aggregates; a process that is fully reversible upon addition of the metal chelator ethylenediaminetetraacetic acid. These findings reveal that His–metal coordination can be used as a versatile cross-linking mechanism for tuning the viscoelastic properties of biomimetic hydrogels.
机译:天然生物聚合物材料通常具有优于其单个组分的性能。在贻贝中,可逆的组氨酸(His)-金属的配位是关键特征,它介导了高阶自组装以及自愈。因此,byssus结构可作为开发具有可逆可调机械性能的自我修复仿生材料的绝佳自然蓝图。受底线的启发,我们将His-金属配位点进行了生物工程改造,成为异二聚体卷曲螺旋(CC)。这些形成CC的肽可作为基于聚乙二醇的水凝胶的非共价交联剂,并通过分子间的His-金属配位作为第二种交联方式参与高阶组装的形成。拉曼光谱和圆二色光谱显示存在α-螺旋,Zn 2 + 交联聚集体。通过流变学,我们证明了水凝胶是自修复的,并且添加Zn 2 + 可逆地将水凝胶的性能从粘弹性转变为弹性。重要的是,使用不同的Zn 2 + :His比值可以在近三个数量级上调整水凝胶的弛豫时间。这种可调节性归因于单个CC交联逐渐转变为Zn 2 + 交联聚集体。加入金属螯合剂乙二胺四乙酸后可完全逆转的方法。这些发现表明,His-金属配位可用作调节仿生水凝胶粘弹性的通用交联机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号