首页> 美国卫生研究院文献>Blood Advances >TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation
【2h】

TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation

机译:TLR激活的Fe-S簇生物发生的抑制作用驱动代谢转变并改变组蛋白和微管蛋白的乙酰化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given the essential roles of iron-sulfur (Fe-S) cofactors in mediating electron transfer in the mitochondrial respiratory chain and supporting heme biosynthesis, mitochondrial dysfunction is a common feature in a growing list of human Fe-S cluster biogenesis disorders, including Friedreich ataxia and GLRX5-related sideroblastic anemia. Here, our studies showed that restriction of Fe-S cluster biogenesis not only compromised mitochondrial oxidative metabolism but also resulted in decreased overall histone acetylation and increased H3K9me3 levels in the nucleus and increased acetylation of α-tubulin in the cytosol by decreasing the lipoylation of the pyruvate dehydrogenase complex, decreasing levels of succinate dehydrogenase and the histone acetyltransferase ELP3, and increasing levels of the tubulin acetyltransferase MEC17. Previous studies have shown that the metabolic shift in Toll-like receptor (TLR)–activated myeloid cells involves rapid activation of glycolysis and subsequent mitochondrial respiratory failure due to nitric oxide (NO)–mediated damage to Fe-S proteins. Our studies indicated that TLR activation also actively suppresses many components of the Fe-S cluster biogenesis machinery, which exacerbates NO-mediated damage to Fe-S proteins by interfering with cluster recovery. These results reveal new regulatory pathways and novel roles of the Fe-S cluster biogenesis machinery in modifying the epigenome and acetylome and provide new insights into the etiology of Fe-S cluster biogenesis disorders.
机译:鉴于铁硫(Fe-S)辅助因子在介导线粒体呼吸链中的电子转移和支持血红素生物合成中的重要作用,线粒体功能障碍是人类Fe-S集群生物发生障碍(包括Friedreich共济失调)中越来越多的共同特征。和GLRX5相关的铁粒幼细胞贫血。在这里,我们的研究表明,Fe-S簇生物发生的限制不仅破坏了线粒体的氧化代谢,而且还导致总的组蛋白乙酰化降低和细胞核中H3K9me3含量升高,并通过降低细胞内脂酰化而增加了细胞质中α-微管蛋白的乙酰化程度。丙酮酸脱氢酶复合物,琥珀酸脱氢酶和组蛋白乙酰转移酶ELP3水平降低,微管蛋白乙酰转移酶MEC17水平升高。先前的研究表明,Toll样受体(TLR)激活的髓样细胞的代谢转变涉及糖酵解的快速激活以及随后由于一氧化氮(NO)介导的对Fe-S蛋白的破坏而导致的线粒体呼吸衰竭。我们的研究表明,TLR激活还可以积极抑制Fe-S簇生物发生机制的许多成分,这会通过干扰簇的恢复而加剧NO介导的对Fe-S蛋白的破坏。这些结果揭示了Fe-S簇生物发生机制在修饰表观基因组和乙酰基组中的新调控途径和新作用,并为Fe-S簇生物发生障碍的病因学提供了新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号