首页> 美国卫生研究院文献>The Journal of Physiology >Adenosine effects on inhibitory synaptic transmission and excitation–inhibition balance in the rat neocortex
【2h】

Adenosine effects on inhibitory synaptic transmission and excitation–inhibition balance in the rat neocortex

机译:腺苷对大鼠新皮层抑制性突触传递和兴奋抑制平衡的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Adenosine might be the most widespread neuromodulator in the brain: as a metabolite of ATP it is present in every neuron and glial cell. However, how adenosine affects operation of neurons and networks in the neocortex is poorly understood, mostly because modulation of inhibitory transmission by adenosine has been so little studied. To clarify adenosine's role at inhibitory synapses, and in excitation–inhibition balance in pyramidal neurons, we recorded pharmacologically isolated inhibitory responses, compound excitatory–inhibitory responses and spontaneous events in layer 2/3 pyramidal neurons in slices from rat visual cortex. We show that adenosine (1–150 μm) suppresses inhibitory transmission to these neurons in a concentration-dependent and reversible manner. The suppression was mediated by presynaptic A1 receptors (A1Rs) because it was blocked by a selective A1 antagonist, DPCPX, and associated with changes of release indices: paired-pulse ratio, inverse coefficient of variation and frequency of miniature events. At some synapses (12 out of 24) we found evidence for A2ARs: their blockade led to a small but significant increase of the magnitude of adenosine-mediated suppression. This effect of A2AR blockade was not observed when A1Rs were blocked, suggesting that A2ARs do not have their own effect on transmission, but can modulate the A1R-mediated suppression. At both excitatory and inhibitory synapses, the magnitude of A1R-mediated suppression and A2AR–A1R interaction expressed high variability, suggesting high heterogeneity of synapses in the sensitivity to adenosine. Adenosine could change the balance between excitation and inhibition at a set of inputs to a neuron bidirectionally, towards excitation or towards inhibition. On average, however, these bidirectional changes cancelled each other, and the overall balance of excitation and inhibition was maintained during application of adenosine. These results suggest that changes of adenosine concentration may lead to differential modulation of excitatory–inhibitory balance in pyramidal neurons, and thus redistribution of local spotlights of activity in neocortical circuits, while preserving the balanced state of the whole network.
机译:腺苷可能是大脑中最广泛的神经调节剂:作为ATP的代谢产物,它存在于每个神经元和神经胶质细胞中。然而,人们对腺苷如何影响新皮层中神经元和网络的运作知之甚少,这主要是因为对腺苷对抑制性传递的调节研究很少。为了阐明腺苷在锥体神经元的抑制性突触和兴奋-抑制平衡中的作用,我们记录了大鼠视皮层切片中2/3锥体神经元中药理学上分离的抑制反应,复合兴奋性-抑制性反应和自发事件。我们表明,腺苷(1-150μm)以浓度依赖性和可逆的方式抑制向这些神经元的抑制性传递。这种抑制作用是由突触前的A1受体(A1Rs)介导的,因为它被选择性的A1拮抗剂DPCPX阻断,并与释放指数的变化有关:成对脉冲比率,反向变异系数和微型事件的频率。在一些突触中(24个中的12个),我们发现了A2AR的证据:它们的阻滞导致腺苷介导的抑制作用幅度小而显着增加。当A1R被阻断时,未观察到A2AR阻断的这种作用,表明A2AR对传播没有影响,但可以调节A1R介导的抑制作用。在兴奋性和抑制性突触中,A1R介导的抑制作用和A2AR–A1R相互作用的程度均表现出高变异性,表明突触对腺苷的敏感性存在高度异质性。腺苷可以双向或双向地改变神经元的一组输入端的激发与抑制之间的平衡。但是,平均而言,这些双向变化相互抵消,并且在腺苷的施加过程中维持了激发和抑制的总体平衡。这些结果表明,腺苷浓度的变化可能导致锥体神经元兴奋性-抑制性平衡的差异调节,从而重新分布新皮层回路的局部活动聚光灯,同时保持整个网络的平衡状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号