首页> 美国卫生研究院文献>The Journal of Physiology >Silicon central pattern generators for cardiac diseases
【2h】

Silicon central pattern generators for cardiac diseases

机译:用于心脏病的硅中央模式发生器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease.
机译:心脏节律管理设备可为心律失常和再同步提供疗法,但不能提供心力衰竭,这会影响全球数百万患者。本文回顾了生物物理学和数学工程学的最新进展,这些进展为解决心脏病和响应生理反馈实现心脏起搏的逐次适应提供了一个新的技术平台。该技术由硅硬件中央模式发生器(hCPG)组成,可对其进行训练以准确模拟生物中央模式发生器(bCPG)的动态响应。我们讨论了当前CPG的局限性,并评估了在生物电子医学中应用模拟技术优于数字电路的优势。为了测试该系统,我们集中研究了延髓中的心脏呼吸振子,该振子与呼吸同步地调节心率,从而诱发呼吸窦性心律不齐(RSA)。我们在这里描述了一种新颖的,可扩展的hCPG,其中包括生理上逼真的(霍奇金-赫克斯利类型)神经元和突触。我们的hCPG包含两个相互拮抗的神经元,为迷走神经提供节律性的运动驱动,以减慢心脏的速度。我们展示了建模方面的最新进展如何使电机输出适应生理反馈(例如呼吸)。在大鼠中,我们报道了使用hCPG(可通过diaphragm肌肌电图输入)恢复RSA,并使用它在呼吸周期的特定时间点刺激迷走神经以减慢心率。我们已经验证了刺激对呼吸频率变化的适应性。我们证明,hCPG在RSA相对于呼吸阶段的深度和时机方面是可调节的。这些开创性研究现在将允许对RSA的生理作用及其在心脏病中的任何潜在治疗用途进行分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号