首页> 美国卫生研究院文献>The Journal of Physiology >Inward rectifier potassium currents in mammalian skeletal muscle fibres
【2h】

Inward rectifier potassium currents in mammalian skeletal muscle fibres

机译:哺乳动物骨骼肌纤维的内向整流钾电流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inward rectifying potassium (Kir) channels play a central role in maintaining the resting membrane potential of skeletal muscle fibres. Nevertheless their role has been poorly studied in mammalian muscles. Immunohistochemical and transgenic expression were used to assess the molecular identity and subcellular localization of Kir channel isoforms. We found that Kir2.1 and Kir2.2 channels were targeted to both the surface andthe transverse tubular system membrane (TTS) compartments and that both isoforms can be overexpressed up to 3-fold 2 weeks after transfection. Inward rectifying currents (IKir) had the canonical features of quasi-instantaneous activation, strong inward rectification, depended on the external [K+], and could be blocked by Ba2+ or Rb+. In addition, IKir records show notable decays during large 100 ms hyperpolarizing pulses. Most of these properties were recapitulated by model simulations of the electrical properties of the muscle fibre as long as Kir channels were assumed to be present in the TTS. The model also simultaneously predicted the characteristics of membrane potential changes of the TTS, as reported optically by a fluorescent potentiometric dye. The activation of IKir by large hyperpolarizations resulted in significant attenuation of the optical signals with respect to the expectation for equal magnitude depolarizations; blocking IKir with Ba2+ (or Rb+) eliminated this attenuation. The experimental data, including the kinetic properties of IKir and TTS voltage records, and the voltage dependence of peak IKir, while measured at widely dissimilar bulk [K+] (96 and 24 mm), were closely predicted by assuming Kir permeability (PKir) values of ∼5.5 × 10−6 cm s−1 and equal distribution of Kir channels at the surface and TTS membranes. The decay of IKir records and the simultaneous increase in TTS voltage changes were mostly explained by K+ depletion from the TTS lumen. Most importantly, aside from allowing an accurate estimation of most of the properties of IKir in skeletal muscle fibres, the model demonstrates that a substantial proportion of IKir (>70%) arises from the TTS. Overall, our work emphasizes that measured intrinsic properties (inward rectification and external [K] dependence) and localization of Kir channels in the TTS membranes are ideally suited for re-capturing potassium ions from the TTS lumen during, and immediately after, repetitive stimulation under physiological conditions.Key points class="unordered" style="list-style-type:disc"> This paper provides a comprehensive electrophysiological characterization of the external [K+] dependence and inward rectifying properties of Kir channels in fast skeletal muscle fibres of adult mice. Two isoforms of inward rectifier K channels (IKir2.1 and IKir2.2) are expressed in both the surface and the transverse tubular system (TTS) membranes of these fibres. Optical measurements demonstrate that Kir currents (IKir) affect the membrane potential changes in the TTS membranes, and result in a reduction in luminal [K+]. A model of the muscle fibre assuming that functional Kir channels are equally distributed between the surface and TTS membranes accounts for both the electrophysiological and the optical data. Model simulations demonstrate that the more than 70% of IKir arises from the TTS membranes. [K+] increases in the lumen of the TTS resulting from the activation of K delayed rectifier channels (Kv) lead to drastic enhancements of IKir, and to right-shifts in their reversal potential. These changes are predicted by the model. class="head no_bottom_margin" id="__sec2title">IntroductionInward rectifier potassium (Kir) channels are known to play a crucial role in skeletal muscle physiology as, together with chloride channels (ClC-1; Bretag, ), they are responsible for the characteristic negative resting membrane potentials that result from potassium and chloride concentration gradients (Katz, ; Hodgkin & Horowicz, , ; Stanfield et al. ). The properties of Kir currents (IKir) were extensively investigated in amphibian muscle fibres (Hodgkin & Horowicz, , ; Standen & Stanfield, ; Leech & Stanfield, ; Stanfield et al. ) where they have been shown to originate at the surface and transverse tubular system (TTS) membranes (Almers, ; Standen & Stanfield, ; Ashcroft et al. ). In contrast, IKir measurements in mammalian skeletal muscle fibres are scarce (Duval & Leoty, ; Beam & Donaldson, ; Barrett-Jolley et al. ) and have yielded an incomplete characterization of the functional properties of Kir channels in their natural environment.It has been reported, by immunohistochemistry (IH) and molecular biological methods, that mammalian skeletal muscles express several types of Kir channels, including Kir1.1, Kir2.1, Kir2.2, Kir2.6 and Kir6.2 (KATP) channels (Kubo et al. href="#b51" rid="b51" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898253">1993; Raab-Graham et al. href="#b59" rid="b59" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898212">1994; Takahashi et al. href="#b66" rid="b66" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898196">1994; Doupnik et al. href="#b26" rid="b26" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898226">1995; Inagaki et al. href="#b44" rid="b44" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898164">1995; Kondo et al. href="#b49" rid="b49" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898187">1996; Kristensen et al. href="#b50" rid="b50" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898181">2006; Dassau et al. href="#b16" rid="b16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898259">2011). Nevertheless, it is generally accepted that Kir channels in skeletal muscle belong to the Kir2.x family, and that Kir2.1 and Kir2.2 may be the most prevalent isoforms (Doupnik et al. href="#b26" rid="b26" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898180">1995; Stanfield et al. href="#b64" rid="b64" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898327">2002; Hibino et al. href="#b38" rid="b38" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898166">2010; Dassau et al. href="#b16" rid="b16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898204">2011); yet, the evidence about their location in the surface and TTS membrane is less conclusive (Kristensen et al. href="#b50" rid="b50" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898336">2006; Dassau et al. href="#b16" rid="b16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898326">2011). Also, heterologously expressed Kir2.1 and Kir2.2 channels display strong inward rectification, are constitutively active and are able to form heterotetramers (Doupnik et al. href="#b26" rid="b26" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898266">1995; Stanfield et al. href="#b64" rid="b64" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898292">2002; Hibino et al. href="#b38" rid="b38" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898169">2010). However, their functional characterization in the naïve environment of skeletal muscle fibres, together with a quantitative balance of the respective IKir contributions from the surface and TTS membranes, as estimated for amphibian muscle, is missing.This paper reports results from experiments that have been carefully designed to characterize IKir in murine fast muscle fibres and to ultimately define the distribution of Kir channels between the surface and TTS membrane compartments. To this end, we have combined electrophysiological and optical methods and model simulations to quantitatively assess not only the physiological properties of ion channels in the context of adult mammalian skeletal muscle fibres, but also their relative distribution between surface and TTS membranes (S/TTS ratio). This approach has been used previously to perform similar studies of the ClC-1 currents (DiFranco et al. href="#b19" rid="b19" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898329">2011a), sodium (NaV1.4; DiFranco & Vergara, href="#b24" rid="b24" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898249">2011) and potassium delayed rectifier channels (KV1.4 and KV3.4; DiFranco et al. href="#b22" rid="b22" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898213">2012) of adult murine fibres. We also performed IH and transient expression experiments to study the targeting of native and transgenic IKir2.1 and 2.2 channels.The present work extends previous studies from our laboratory characterizing other ion conductances present in the sarcolemma and TTS membranes that are responsible for the electrical properties of mammalian skeletal muscle fibres. The knowledge gained here is vital to understand the homeostasis of potassium ions during sustained activity, and how it may affect the fibres’ excitability.
机译:内向整流钾(Kir)通道在维持骨骼肌纤维的静息膜电位方面起着核心作用。然而,在哺乳动物肌肉中对其作用的研究很少。免疫组化和转基因表达被用来评估Kir通道亚型的分子同一性和亚细胞定位。我们发现Kir2.1和Kir2.2通道同时针对表面和横管系统膜(TTS)隔室,并且两种同工型在转染后长达2倍的3周内都可以过表达。内向整流电流(IKir)具有准瞬时激活,强内向整流的典型特征,取决于外部[K + ],并且可能被Ba 2 + 或Rb + 。此外,IKir记录显示在大100ms超极化脉冲期间有明显的衰减。只要假定TTS中存在Kir通道,就可以通过肌肉纤维电特性的模型模拟来概括其中的大多数特性。该模型还同时预测了TTS膜电位变化的特征,如荧光电位染料的光学报道。相对于对等幅去极化的期望,大超极化对IKir的激活导致光信号的显着衰减。用Ba 2 + (或Rb + )阻止IKir消除了这种衰减。严密预测了实验数据,包括IKir和TTS电压记录的动力学特性,以及峰值IKir的电压依赖性(在相异的大块[K + ](96和24mm)下测量)假设Kir渗透率(PKir)值为5.5×10 10 6(sup)cm ss-1(sup),并且Kir通道在表面膜和TTS膜上分布均匀。 IKir记录的衰减和TTS电压变化的同时增加主要是由TTS管腔的K + 耗尽所解释的。最重要的是,除了可以准确估计骨骼肌纤维中IKir的大多数特性外,该模型还表明,很大一部分IKir(> 70%)来自TTS。总体而言,我们的工作强调,在TTS膜下反复刺激期间和之后,从TTS腔中重新捕获钾离子的情况下,测量的固有特性(向内整流和外部[K]依赖性)和Kir通道在TTS膜中的定位非常理想。生理状况。要点 class =“ unordered” style =“ list-style-type:disc”> <!-list-behavior = unordered prefix-word = mark-type = disc max-label-size = 0- -> 本文提供了成年小鼠快速骨骼肌纤维中外部[K + ]依赖性和Kir通道向内整流特性的全面电生理学表征。 这些纤维的表面和横向管状系统(TTS)膜均表达了内向整流K通道的两个同工型(IKir2.1和IKir2.2)。 光学测量表明,Kir电流(IKir)影响TTS膜的膜电位变化,并导致腔内[K + ]减少。 假设功能性Kir通道在表面膜和TTS膜之间平均分布的肌肉纤维模型可解释电生理和光学数据。 模型仿真表明,超过70%的IKir来自TTS膜。 [K + ]由于激活K延迟整流器通道(Kv)而导致TTS内腔增加,导致IKir急剧增强,并导致IKir右移。他们的逆转潜力。这些变化由模型预测。 class =“ head no_bottom_margin” id =“ __ sec2title”>简介内向整流钾(Kir)通道与氯化物一起在骨骼肌生理中起着至关重要的作用通道(ClC-1; Bretag,),它们负责由钾和氯化物浓度梯度导致的特征性负性静息膜电位(Katz,; Hodgkin&Horowicz,,; Stanfield等)。在两栖肌纤维中广泛研究了Kir电流(IKir)的特性(Hodgkin&Horowicz,;; Standen&Stanfield ,; Leech&Stanfield ,; Stanfield等),这些电流已证明起源于表面和横向管状系统(TTS)膜(Almers ,; Standen&Stanfield ,; Ashcroft等)。相比之下,哺乳动物骨骼肌纤维中的IKir测量很少(Duval&Leoty ,; Beam&Donaldson,; Barrett-Jolley等),并没有完全描述其自然环境中Kir通道的功能特性。通过免疫组织化学(IH)和分子生物学方法已报道,哺乳动物骨骼肌表达多种类型的Kir通道,包括Kir1.1, Kir2.1,Kir2.2,Kir2.6和Kir6.2(KATP)频道(久保等。href =“#b51” rid =“ b51” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434898253” > 1993 ; Raab-Graham等人。href="#b59" rid="b59" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898212"> 1994 ;高桥等人。 href="#b66" rid="b66" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898196"> 1994 ; Doupnik等。href =“#b26” rid =“ b26” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434898226”> 1995 ; Inagaki等。href =“#b44” rid =“ b44” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434898164” > 1995 ; Kondo等人href =“#b49” rid =“ b49” class =“ bibr popnode tag_ hotlink tag_tooltip“ id =” __ tag_434898187“> 1996 ;克里斯滕森(Kristensen)等。 href="#b50" rid="b50" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898181"> 2006 ;达索(Dassau)等。 href="#b16" rid="b16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898259"> 2011 )。尽管如此,人们普遍认为骨骼肌中的Kir通道属于Kir2.x家族,并且Kir2.1和Kir2.2可能是最流行的同工型(Doupnik et al。href =“#b26” rid = “ b26” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434898180”> 1995 ; Stanfield等。href =“#b64” rid =“ b64” class =“ bibr popnode tag_hotlink tag_tooltip” id = “ __tag_434898327”> 2002 ; Hibino等。href="#b38" rid="b38" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898166"> 2010 ;达索等。href="#b16" rid="b16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898204"> 2011 );但是,关于它们在表面和TTS膜中的位置的证据尚无定论(Kristensen et 。href =“#b50” rid =“ b50” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434898336”> 2006 ;达索 et 。href="#b16" rid="b16" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898326"> 2011 )。此外,异源表达的Kir2.1和Kir2.2通道显示出强大的内向整流能力,具有组成性活性,并能够形成异四聚体(Doupnik et 。href =“#b26” rid =“ b26 “ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_434898266“> 1995 ;斯坦菲尔德 et 。href =”#b64“ rid =” b64“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_434898292“> 2002 ; Hibino et 。href =”#b38“ rid =” b38“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __tag_434898169“> 2010 )。但是,在两栖动物肌肉的原始环境中,它们在骨骼肌纤维的原始环境中的功能表征以及表面和TTS膜各自的IKir贡献的定量平衡都缺失了。本文报道了仔细研究的结果旨在表征鼠快肌纤维中的IKir并最终定义表面和TTS膜区室之间的Kir通道分布。为此,我们结合了电生理学和光学方法以及模型模拟,不仅定量评估了成年哺乳动物骨骼肌纤维中离子通道的生理特性,而且定量评估了它们在表面和TTS膜之间的相对分布(S / TTS比) )。此方法以前曾用于对ClC-1电流进行类似研究(DiFranco et 。href =“#b19” rid =“ b19” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434898329”> 2011a ),钠盐(NaV1.4; DiFranco&Vergara,href="#b24" rid="b24" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434898249"> 2011 )和钾延迟整流器通道(KV1.4和KV3.4; DiFranco et 。href =“#b22” rid =“ b22” class =“ bibr popnode tag_hotlink tag_tooltip “ id =” __ tag_434898213“> 2012 )。我们还进行了IH和瞬时表达实验,以研究天然和转基因IKir2.1和2.2通道的靶向性。本工作扩展了我们实验室以前的研究,该研究表征了肌膜和TTS膜中存在的其他电导率,这些电导率负责电特性。哺乳动物骨骼肌纤维。在这里获得的知识对于了解持续活动过程中钾离子的动态平衡以及如何影响纤维的兴奋性至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号