首页> 美国卫生研究院文献>Journal of the Royal Society Interface >M-type potassium conductance controls the emergence of neural phase codes: a combined experimental and neuron modelling study
【2h】

M-type potassium conductance controls the emergence of neural phase codes: a combined experimental and neuron modelling study

机译:M型钾电导控制神经相代码的出现:结合实验和神经元建模研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rate and phase codes are believed to be important in neural information processing. Hippocampal place cells provide a good example where both coding schemes coexist during spatial information processing. Spike rate increases in the place field, whereas spike phase precesses relative to the ongoing theta oscillation. However, what intrinsic mechanism allows for a single neuron to generate spike output patterns that contain both neural codes is unknown. Using dynamic clamp, we simulate an in vivo-like subthreshold dynamics of place cells to in vitro CA1 pyramidal neurons to establish an in vitro model of spike phase precession. Using this in vitro model, we show that membrane potential oscillation (MPO) dynamics is important in the emergence of spike phase codes: blocking the slowly activating, non-inactivating K+ current (IM), which is known to control subthreshold MPO, disrupts MPO and abolishes spike phase precession. We verify the importance of adaptive IM in the generation of phase codes using both an adaptive integrate-and-fire and a Hodgkin–Huxley (HH) neuron model. Especially, using the HH model, we further show that it is the perisomatically located IM with slow activation kinetics that is crucial for the generation of phase codes. These results suggest an important functional role of IM in single neuron computation, where IM serves as an intrinsic mechanism allowing for dual rate and phase coding in single neurons.
机译:速率和相位代码被认为在神经信息处理中很重要。海马地方细胞提供了一个很好的例子,在空间信息处理过程中两种编码方案共存。峰值场中的峰值速率增加,而峰值相位相对于正在进行的theta振荡是进动的。但是,哪种内在机制允许单个神经元生成包含两个神经代码的尖峰输出模式尚不清楚。使用动态钳位,我们模拟了放置细胞到体外CA1锥体神经元的体内样亚阈值动力学,从而建立了穗期进动的体外模型。使用该体外模型,我们表明膜电势振荡(MPO)动力学在尖峰相位代码的出现中很重要:阻止缓慢激活,非灭活的K + 电流(IM),这是已知可以控制低于阈值的MPO,破坏MPO并消除尖峰相位的进动。我们使用自适应积分并发射和霍奇金-赫克斯利(HH)神经元模型验证了自适应IM在相位代码生成中的重要性。特别是,使用HH模型,我们进一步表明,具有缓慢激活动力学的,位于异相处的IM对生成相位码至关重要。这些结果表明,IM在单神经元计算中起着重要的功能作用,其中IM是一种内在机制,允许在单个神经元中进行双速率和相位编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号