首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Built for rowing: frog muscle is tuned to limb morphology to power swimming
【2h】

Built for rowing: frog muscle is tuned to limb morphology to power swimming

机译:专为划船而设计:将青蛙肌肉调整为肢体形态以助游泳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rowing is demanding, in part, because drag on the oars increases as the square of their speed. Hence, as muscles shorten faster, their force capacity falls, whereas drag rises. How do frogs resolve this dilemma to swim rapidly? We predicted that shortening velocity cannot exceed a terminal velocity where muscle and fluid torques balance. This terminal velocity, which is below Vmax, depends on gear ratio (GR = outlever/inlever) and webbed foot area. Perhaps such properties of swimmers are ‘tuned’, enabling shortening speeds of approximately 0.3Vmax for maximal power. Predictions were tested using a ‘musculo-robotic’ Xenopus laevis foot driven either by a living in vitro or computational in silico plantaris longus muscle. Experiments verified predictions. Our principle finding is that GR ranges from 11.5 to 20 near the predicted optimum for rowing (GR ≈ 11). However, gearing influences muscle power more strongly than foot area. No single morphology is optimal for producing muscle power. Rather, the ‘optimal’ GR decreases with foot size, implying that rowing ability need not compromise jumping (and vice versa). Thus, despite our neglect of additional forces (e.g. added mass), our model predicts pairings of physiological and morphological properties to confer effective rowing. Beyond frogs, the model may apply across a range of size and complexity from aquatic insects to human-powered rowing.
机译:划船之所以要求严格,部分原因是桨上的阻力随着速度的平方而增加。因此,随着肌肉更快地缩短,其力量下降,而阻力上升。青蛙如何解决这个快速游泳的难题?我们预测缩短速度不能超过肌肉和流体扭矩平衡的最终速度。低于Vmax的最终速度取决于齿轮比(GR =伸出/伸出)和蹼足面积。也许游泳者的这些特性是“调整过的”,从而可以最大速度缩短约0.3Vmax的速度。使用“肌肉机器人”非洲爪蟾脚来测试预测,该脚由活体外或计算机模拟plant足肌驱动。实验验证了预测。我们的主要发现是,GR的范围从11.5到20接近划船的预测最佳值(GR≈11)。但是,齿轮比脚部区域对肌肉力量的影响更大。没有单一的形态可以最佳地产生肌肉力量。相反,“最佳” GR随脚的大小而减小,这意味着划船能力不必影响跳跃(反之亦然)。因此,尽管我们忽略了附加力(例如增加的质量),但我们的模型仍预测了生理和形态特性的配对以赋予有效的划船力。除了青蛙以外,该模型还可以应用于从水生昆虫到人力划船的各种大小和复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号