首页> 美国卫生研究院文献>Journal of the Royal Society Interface >Material nanosizing effect on living organisms: non-specific biointeractive physical size effects
【2h】

Material nanosizing effect on living organisms: non-specific biointeractive physical size effects

机译:物质对生物体的纳米化作用:非特异性生物相互作用物理尺寸效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Nanosizing effects of materials on biological organisms was investigated by biochemical cell functional tests, cell proliferation and animal implantation testing. The increase in specific surface area causes the enhancement of ionic dissolution and serious toxicity for soluble, stimulative materials. This effect originates solely from materials and enhances the same functions as those in a macroscopic size as a catalyst. There are other effects that become prominent, especially for non-soluble, biocompatible materials such as Ti. Particle size dependence showed the critical size for the transition of behaviour is at approximately 100 μm, 10 μm and 200 nm. This effect has its origin in the biological interaction process between both particles and cells/tissue. Expression of superoxide anions, cytokines tumour necrosis factor-α and interleukin-1β from neutrophils was increased with the decrease in particle size and especially pronounced below 10 μm, inducing phagocytosis to cells and inflammation of tissue, although inductively coupled plasma chemical analysis showed no dissolution from Ti particles. Below 200 nm, stimulus decreases, then particles invade into the internal body through the respiratory or digestive systems and diffuse inside the body. Although macroscopic hydroxyapatite, which exhibits excellent osteoconductivity, is not replaced with natural bone, nanoapatite composites induce both phagocytosis of composites by osteoclasts and new bone formation by osteoblasts when implanted in bone defects. The progress of this bioreaction results in the conversion of functions to bone substitution. Although macroscopic graphite is non-cell adhesive, carbon nanotubes (CNTs) are cell adhesive. The adsorption of proteins and nano-meshwork structure contribute to the excellent cell adhesion and growth on CNTs. Non-actuation of the immune system except for a few innate immunity processes gives the non-specific nature to the particle bioreaction and restricts reaction to the size-sensitive phagocytosis. Materials larger than cell size, approximately 10 μm, behave inertly, but those smaller become biointeractive and induce the intrinsic functions of living organisms. This bioreaction process causes the conversion of functions such as from biocompatibility to stimulus in Ti-abraded particles, from non-bone substitutional to bone substitutional in nanoapatite and from non-cell adhesive to cell adhesive CNTs. The insensitive nature permits nanoparticles that are less than 200 nm to slip through body defence systems and invade directly into the internal body.
机译:通过生化细胞功能测试,细胞增殖和动物植入测试,研究了材料对生物体的纳米化作用。比表面积的增加导致离子溶解的增强和对可溶性刺激性材料的严重毒性。这种作用仅源于材料,并增强了与宏观尺寸的催化剂相同的功能。还有其他影响变得突出,特别是对于不溶性,生物相容性材料(例如Ti)。粒度依赖性表明,行为转变的临界尺寸约为100μm,10μm和200μnm。这种作用起源于颗粒与细胞/组织之间的生物相互作用过程。中性粒细胞中超氧阴离子,细胞因子,肿瘤坏死因子-α和白介素-1β的表达随粒径的减小而增加,特别是低于10μm时明显增加,诱导吞噬细胞和组织炎症,尽管电感耦合等离子体化学分析未显示溶解从钛颗粒。低于200nm时,刺激减弱,然后颗粒通过呼吸或消化系统侵入体内,并在体内扩散。尽管表现出优异的骨传导性的宏观羟基磷灰石并未被天然骨所替代,但是纳米磷灰石复合物在植入骨缺损时既能诱导破骨细胞吞噬复合物,又能诱导成骨细胞形成新的骨。这种生物反应的进展导致功能向骨替代的转化。尽管宏观石墨是非细胞粘合剂,但碳纳米管(CNT)是细胞粘合剂。蛋白质的吸附和纳米网状结构有助于在CNT上实现出色的细胞粘附和生长。除少数先天免疫过程外,免疫系统的非激活使颗粒生物反应具有非特异性,并限制了对尺寸敏感的吞噬作用的反应。大于细胞大小(约10μm)的物质表现出惰性,但较小的物质变得具有生物互动性,并诱导了生物体的固有功能。这种生物反应过程导致功能的转变,例如从生物相容性到Ti磨损颗粒中的刺激,从纳米磷灰石中的非骨取代到骨取代以及从非细胞粘合剂到细胞粘合剂CNT的转化。不敏感的性质允许小于200 nm的纳米粒子滑过人体防御系统并直接侵入体内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号