首页> 美国卫生研究院文献>The Journal of Physiology >Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick
【2h】

Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick

机译:轴突钠通道在小鸡胞核中精确听觉时间编码中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

How the axonal distribution of Na+ channels affects the precision of spike timing is not well understood. We addressed this question in auditory relay neurons of the avian nucleus magnocellularis. These neurons encode and convey information about the fine structure of sounds to which they are tuned by generating precisely timed action potentials in response to synaptic inputs. Patterns of synaptic inputs differ as a function of tuning. A small number of large inputs innervate high- and middle-frequency neurons, while a large number of small inputs innervate low-frequency neurons. We found that the distribution and density of Na+ channels in the axon initial segments varied with the synaptic inputs, and were distinct in the low-frequency neurons. Low-frequency neurons had a higher density of Na+ channels within a longer axonal stretch, and showed a larger spike amplitude and whole-cell Na+ current than high/middle-frequency neurons. Computer simulations revealed that for low-frequency neurons, a large number of Na+ channels were crucial for preserving spike timing because it overcame Na+ current inactivation and K+ current activation during compound EPSPs evoked by converging small inputs. In contrast, fewer channels were sufficient to generate a spike with high precision in response to an EPSP induced by a single massive input in the high/middle-frequency neurons. Thus the axonal Na+ channel distribution is effectively coupled with synaptic inputs, allowing these neurons to convey auditory information in the timing of firing.
机译:Na + 通道的轴突分布如何影响尖峰定时的精度尚不清楚。我们在禽细胞核magnocellularis的听觉中继神经元中解决了这个问题。这些神经元通过响应于突触输入而产生精确定时的动作电位,来编码和传达有关声音的精细结构的信息,并对其进行调谐。突触输入的模式根据调整而有所不同。少量的大输入支配高频和中频神经元,而大量的小输入支配低频神经元。我们发现,Na + 通道在轴突起始节段的分布和密度随突触输入而变化,并且在低频神经元中是不同的。低频神经元在较长的轴突拉伸范围内具有较高的Na + 通道密度,并且与高/中-高频相比具有更大的尖峰幅度和全细胞Na + 电流。频率神经元。计算机模拟显示,对于低频神经元,大量的Na + 通道对于克服峰值时间至关重要,因为它克服了Na + 电流失活和K + 通过收敛小输入在复合EPSP期间激活电流。相反,较少的通道足以响应由高/中频神经元中单个大量输入引起的EPSP产生高精度的尖峰。因此,轴突Na + 通道分布与突触输入有效耦合,从而使这些神经元能够在发射时机传达听觉信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号