首页> 美国卫生研究院文献>BoneKEy Reports >Bone microdamage remodeling and bone fragility: how much damage is too much damage?
【2h】

Bone microdamage remodeling and bone fragility: how much damage is too much damage?

机译:骨骼微损伤重塑和骨骼脆性:多少伤害是太多伤害?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microdamage resulting from fatigue or ‘wear and tear' loading contributes to bone fragility; however, the full extent of its influence is not completely understood. Linear microcracks (∼50–100 μm) and diffuse damage (clusters of sublamellar-sized cracks) are the two major bone microdamage types, each with different mechanical and biological consequences. Healthy bone, due to its numerous microstructural interfaces and its ability to affect matrix level repair, deals effectively with microdamage. From a material standpoint, healthy bone behaves much like engineering composites like carbon-fiber reinforced plastics. Both materials allow matrix damage to form during fatigue loading and use microstructural interfaces to dissipate energy and limit microcrack propagation to slow fracture. The terms fracture toughness and 'toughening mechanism', respectively, describe mechanical behavior and microstructural features that prevent crack growth and make it harder to fracture a material. Critically, toughness is independent of strength. In bone, primary toughening features include mineral and collagen interfaces, lamellae and tissue heterogeneity among osteons. The damage tolerance of bone and other composites can be overcome with sustained loading and/or matrix changes such that the microstructure no longer limits microcrack propagation. With reduced remodeling due to aging, disease or remodeling suppression, microdamage accumulation can occur along with loss of tissue heterogeneity. Both contribute additively to reduced fracture toughness. Thus, the answer to the key question for bone fragility of how much microdamage is too much is extremely complex. It ultimately depends on the interplay between matrix damage content, internal repair and effectiveness of matrix-toughening mechanisms.
机译:疲劳或“磨损”负荷造成的微损伤会导致骨骼脆弱;但是,其影响的全部范围尚未完全了解。线性微裂纹(〜50–100μm)和弥散性损伤(亚层级裂纹簇)是两种主要的骨微损伤类型,每种类型都有不同的机械和生物学影响。健康的骨骼由于其众多的微结构界面及其影响基质水平修复的能力,可以有效地处理微损伤。从材料的角度来看,健康的骨骼表现得很像工程复合材料,例如碳纤维增强塑料。两种材料都允许在疲劳载荷期间形成基体损伤,并使用微结构界面耗散能量并限制微裂纹的传播以减缓断裂。术语断裂韧性和“增韧机理”分别描述了防止裂纹扩展并使材料更难以断裂的机械行为和微观结构特征。至关重要的是,韧性与强度无关。在骨骼中,主要的增韧特征包括矿物质和胶原蛋白界面,薄片和骨中组织异质性。骨骼和其他复合材料的破坏耐受性可以通过持续的载荷和/或基质变化来克服,从而使微结构不再限制微裂纹的传播。由于衰老,疾病或重塑抑制而导致的重塑减少,微损伤累积会随着组织异质性的丧失而发生。两者都有助于降低断裂韧性。因此,对于骨脆性这个关键问题的答案是多少微损伤太多是非常复杂的。最终取决于基质损伤含量,内部修复和基质增韧机制有效性之间的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号