首页> 美国卫生研究院文献>The Journal of Physiology >Short-term cardiovascular oscillations in man: measuring and modelling the physiologies
【2h】

Short-term cardiovascular oscillations in man: measuring and modelling the physiologies

机译:人体的短期心血管波动:测量和建模生理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Research into cardiovascular variabilities intersects both human physiology and quantitative modelling. This is because respiratory and Mayer wave (or 10 s) cardiovascular oscillations represent the integrated control of a system through both autonomic branches by systemic haemodynamic changes within a fluid-filled, physical system. However, our current precise measurement of short-term cardiovascular fluctuations does not necessarily mean we have an adequate understanding of them. Empirical observation suggests that both respiratory and Mayer wave fluctuations derive from mutable autonomic and haemodynamic inputs. Evidence strongly suggests that respiratory sinus arrhythmia both contributes to and buffers respiratory arterial pressure fluctuations. Moreover, even though virtual abolition of all R-R interval variability by cholinergic blockade suggests that parasympathetic stimulation is essential for expression of these variabilities, respiratory sinus arrhythmia does not always reflect a purely vagal phenomenon. The arterial baroreflex has been cited as the mechanism for both respiratory and Mayer wave frequency fluctuations. However, data suggest that both cardiac vagal and vascular sympathetic fluctuations at these frequencies are independent of baroreflex mechanisms and, in fact, contribute to pressure fluctuations. Results from cardiovascular modelling can suggest possible sources for these rhythms. For example, modelling originally suggested low frequency cardiovascular rhythms derived from intrinsic delays in baroreceptor control, and experimental evidence subsequently corroborated this possibility. However, the complex stochastic relations between and variabilities in these rhythms indicate no single mechanism is responsible. If future study of cardiovascular variabilities is to move beyond qualitative suggestions of determinants to quantitative elucidation of critical physical mechanisms, both experimental design and model construction will have to be more trenchant.
机译:对心血管变异性的研究与人类生理学和定量建模相交。这是因为呼吸和Mayer波(或10 s)的心血管振荡代表了两个自主神经分支对系统的综合控制,而这两个分支是由充满液体的物理系统内的系统血流动力学变化引起的。但是,我们目前对短期心血管波动的精确测量并不一定意味着我们对它们有足够的了解。经验观察表明,呼吸和Mayer波波动均来自可变的自主神经和血液动力学输入。有充分的证据表明,呼吸窦性心律不齐有助于并减轻呼吸动脉压力的波动。此外,尽管通过胆碱能阻滞实际上消除了所有R-R间隔变异,提示副交感神经刺激对于这些变异的表达是必不可少的,但呼吸窦性心律不齐并不总是反映纯迷走神经现象。动脉压力反射被认为是呼吸频率和Mayer波频率波动的机制。但是,数据表明,在这些频率下的心脏迷走神经和血管交感神经起伏均与压力反射机制无关,并且实际上是造成压力波动的原因。心血管模型的结果可能提示这些节律的可能来源。例如,建模最初提出源自压力感受器控制固有延迟的低频心血管节律,随后的实验证据证实了这种可能性。但是,这些节奏之间的复杂随机关系和变异性表明,没有单一的机制负责。如果未来对心血管变异性的研究要超越对决定因素的定性建议,而是对关键物理机制的定量阐明,那么实验设计和模型构建都必须更加明确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号