首页> 美国卫生研究院文献>The Journal of Physiology >The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions
【2h】

The regulation of corneal hydration by a salt pump requiring the presence of sodium and bicarbonate ions

机译:盐泵对角膜水合的调节要求存在钠和碳酸氢根离子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

1. The use of polyacrylamide gel salt bridges enables trans-membrane potentials to be measured to an accuracy of 20 μV over long periods.2. The technique is applied to measure electrical potentials across corneal endothelia of rabbits.3. In de-epithelialized corneas which translocate water, a spontaneous potential of 550 μV is found across the endothelium (tissue resistance 20 Ω cm2).4. This electrical potential (and water translocation) is reduced to zero when sodium is absent from the Ringer, and by about 80% when bicarbonate ions are absent. Removal of chloride has no such effect.5. Under a variety of conditions, the potential correlates with the observed translocation of fluid across corneal endothelium. The translocated fluid is shown to be isotonic with sodium in the Ringer and therefore the potential correlates with `active' sodium transport.6. The potential and water translocation are abolished in the presence of ouabain at concentrations greater than 10-5 M.7. The potential (lens-side negative) is of the wrong polarity to explain the net sodium transport (into the lens-side) by a sodium ion `pump'.8. The current does not equal the net sodium flux under short circuit conditions. They differ in magnitude and polarity.9. A model is proposed where the endothelium `pumps' salt out of the corneal stroma into the aqueous humour.10. Flux equations are derived for a condition where the membrane (corneal endothelium) separates an ion exchanger (corneal stroma) from free solution (aqueous humour), where the usual relationship for free-free solutions Δπ = csΔμs does not apply.11. The model is of use only when the stroma is well stirred. It may be used in whole corneas retaining their epithelium but it may not be used in de-epithelialized corneas.12. The model predicts that the presence of an `active' salt flux out across the endothelium would create passive water and salt fluxes. The passive water flux would also travel out of the stroma across the endothelium; the passive salt flux would travel, in the opposite direction, into the stroma across the endothelium.13. The kinetics of the passive water efflux, as a swollen cornea reverts to physiological hydration (the temperature reversal phenomenon) are predicted extremely well if the `active' salt flux is chosen at 3·3 × 10-7 m-mole. cm-2 sec-1.14. The value of the active salt flux which cannot be measured directly is extrapolated to be somewhat greater than 2·8 × 10-7 m-moles. cm-2 sec-1; in good agreement with that required by the model to explain the temperature reversal phenomenon.15. The model is further used to calculate the salt concentration difference across the endothelium (which drives salt passively into the stroma) at various stromal hydrations.16. When an appropriate salt concentration is applied across the endothelium of de-epithelialized cornea, it generates a potential of the same polarity and similar magnitude to that found across the endothelium of equilibrated whole cornea. The endothelium acts like a cation exchange membrane. id="idm140689023443488">17. Additionally the calculated salt concentration difference across the endothelium correlates well with the measured transendothelial potentials in whole cornea as the corneal hydration varies. id="idm140689023442896" class="p p-last">18. It is concluded that the model of an endothelial neutral salt `pump' regulating corneal hydration is self consistent. The spontaneous potential found across the endothelium could be caused by the consequential passive flux of salt in the opposite direction.
机译:1.聚丙烯酰胺凝胶盐桥的使用使得跨膜电位的长期测量精度达到20V。该技术用于测量兔角膜内皮细胞的电位。3。在使水移位的去上皮的角膜中,在内皮上发现自发电位为550μV(组织电阻为20Ωcm 2 )。4。当林格氏液中不存在钠时,该电位(和水的转运)降低为零,而当无碳酸氢根离子时,该电位(和水的转运)降低至约80%。去除氯化物没有这种效果。5。在各种条件下,电势与观察到的流体跨角膜内皮移位有关。在林格中,易位的液体与钠是等渗的,因此电位与“活跃的”钠转运相关。6。在哇巴因浓度大于10 -5 M.7的情况下,消除了势能和水的转运。电势(透镜侧为负)极性错误,无法解释钠离子泵对钠的净迁移(进入透镜侧).8。在短路条件下,电流不等于净钠通量。它们的大小和极性不同9。提出了一种模型,其中内皮将盐从角膜基质中“泵出”到房水中。10。对于膜(角膜内皮)将离子交换剂(角膜基质)与游离溶液(水性幽默)分开的条件,可得出通量方程式,其中游离溶液的通常关系Δπ=csΔμs不适用.11。该模型仅在基质充分搅拌后才能使用。它可以用于保留其上皮的整个角膜,但不能用于去上皮化的角膜。12。该模型预测,穿过内皮的“主动”盐通量的存在会产生被动的水和盐通量。被动水通量也会穿过内皮从基质中流出。被动盐通量将以相反的方向穿过内皮进入基质。13。如果将“主动”盐通量选择为3·3×10 -7 ,则可以很好地预测被动水流出的动力学,因为角膜肿胀恢复为生理水合作用(温度反转现象)。摩尔。 cm -2 -1 .14。无法直接测量的活性盐通量的值被推断为大于2·8×10 -7 m摩尔。 cm -2 -1 ;与模型解释温度逆转现象所需的相吻合15。该模型还用于计算各种基质水合条件下整个内皮盐的盐浓度差(该盐将盐被动地驱入基质)16。当在去上皮化的角膜的内皮上施加适当的盐浓度时,其产生的电势与在平衡的整个角膜的内皮上发现的电势相同,极性和大小相似。内皮细胞就像阳离子交换膜一样。 id =“ idm140689023443488”> 17。另外,随着角膜水化程度的变化,整个内皮的盐浓度差异与整个角膜中测得的跨内皮电位有很好的相关性。 id =“ idm14068902344289696” class =“ p p-last”> 18。结论是,调节角膜水合的内皮中性盐“泵”模型是自洽的。跨内皮细胞发现的自发电位可能是由相反方向上相应的盐被动通量引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号