首页> 美国卫生研究院文献>Chemical Science >Cation–π interactions in protein–ligand binding: theory and data-mining reveal different roles for lysine and arginine
【2h】

Cation–π interactions in protein–ligand binding: theory and data-mining reveal different roles for lysine and arginine

机译:蛋白质-配体结合中的阳离子-π相互作用:理论和数据挖掘揭示了赖氨酸和精氨酸的不同作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have studied the cation–π interactions of neutral aromatic ligands with the cationic amino acid residues arginine, histidine and lysine using ab initio calculations, symmetry adapted perturbation theory (SAPT), and a systematic meta-analysis of all available Protein Data Bank (PDB) X-ray structures. Quantum chemical potential energy surfaces (PES) for these interactions were obtained at the DLPNO-CCSD(T) level of theory and compared against the empirical distribution of 2012 unique protein–ligand cation–π interactions found in X-ray crystal structures. We created a workflow to extract these structures from the PDB, filtering by interaction type and residue pKa. The gas phase cation–π interaction of lysine is the strongest by more than 10 kcal mol–1, but the empirical distribution of 582 X-ray structures lies away from the minimum on the interaction PES. In contrast, 1381 structures involving arginine match the underlying calculated PES with good agreement. SAPT analysis revealed that underlying differences in the balance of electrostatic and dispersion contributions are responsible for this behavior in the context of the protein environment. The lysine–arene interaction, dominated by electrostatics, is greatly weakened by a surrounding dielectric medium and causes it to become essentially negligible in strength and without a well-defined equilibrium separation. The arginine–arene interaction involves a near equal mix of dispersion and electrostatic attraction, which is weakened to a much smaller degree by the surrounding medium. Our results account for the paucity of cation–π interactions involving lysine, even though this is a more common residue than arginine. Aromatic ligands are most likely to interact with cationic arginine residues as this interaction is stronger than for lysine in higher polarity surroundings.
机译:我们使用从头算,对称适应扰动理论(SAPT)以及所有可用的蛋白质数据库(PDB)的系统荟萃分析,研究了中性芳香族配体与阳离子氨基酸残基精氨酸,组氨酸和赖氨酸的阳离子-π相互作用X射线结构。在DLPNO-CCSD(T)的理论水平上获得了用于这些相互作用的量子化学势能面(PES),并将其与X射线晶体结构中发现的2012年独特的蛋白质-配体阳离子-π相互作用的经验分布进行了比较。我们创建了一个工作流程来从PDB中提取这些结构,并按交互作用类型和残基pKa进行过滤。赖氨酸的气相阳离子-π相互作用最强,超过10 kcal mol -1 ,但是582个X射线结构的经验分布远离PES相互作用的最小值。相比之下,涉及精氨酸的1381个结构与基础计算的PES匹配良好。 SAPT分析表明,在蛋白质环境中,静电和分散作用平衡的根本差异是造成这种现象的原因。赖氨酸与芳烃之间的相互作用主要由静电引起,周围的介电介质大大削弱了赖氨酸与芳烃的相互作用,使其强度几乎可以忽略不计,并且没有明确的平衡间隔。精氨酸与芳烃的相互作用涉及分散和静电引力的几乎相等的混合,周围介质将其减弱到很小的程度。我们的结果解释了赖氨酸与阳离子-π相互作用的不足,尽管这是比精氨酸更常见的残基。芳香族配体最有可能与阳离子精氨酸残基相互作用,因为在较高极性的环境中,这种相互作用比赖氨酸强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号