首页> 美国卫生研究院文献>Chemical Science >Whos on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases
【2h】

Whos on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases

机译:谁在基地?揭示6族糖苷水解酶转化的催化机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase (TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleaving the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is ‘driven’ by strong electrostatic interactions with the protein at the product sites and that the –1 sugar adopts a 2SO ring configuration as it reaches its binding site. This work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.
机译:在几种重要的转化碳水化合物活性酶的重要类别中,催化碱基的身份仍然难以捉摸,包括家族6中的糖苷水解酶(GH6)酶,它们是纤维素酶混合物中用于纤维素解聚的关键成分。尽管已对野生型和突变型酶进行了许多结构和动力学研究,尤其是在里氏木霉(Hypocrea jecorina)GH6纤维素酶(TrCel6A)上,但在GH6家族中尚未明确确定单取代转化机制中的催化碱基。在这里,我们采用过渡路径采样来深入了解催化机理,从而提供了对裂解强糖苷键所涉及的关键有序参数的无偏原子级理解。我们的混合量子力学和分子力学(QM / MM)模拟揭示了一个氢键网络,该网络使两个在水解中起关键作用的活性位点水分子对齐:一个水分子通过对基质的亲核攻击来驱动反应,第二个穿梭分子质子通过短水线到达假定的碱基(D175)。我们还研究了推定碱基突变为丙氨酸的情况,丙氨酸是一种在实验上仍具有部分活性的酶。模拟预测,通过格罗特斯机制,质子沿着水线跳动提供了催化救援的机制。进一步的模拟表明,底物的持续运动是由与蛋白质在产物位点的强烈静电相互作用“驱动”的,并且–1糖到达结合位点时采用 2 SO环构型。因此,这项工作阐明了这一重要酶类别的过程催化机理中以前难以捉摸的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号