首页> 美国卫生研究院文献>Chemical Science >Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage
【2h】

Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage

机译:金属氮化物催化剂的化学环化:用于能量存储的低压氨合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH3), a fertilizer and chemical fuel, from N2 and H2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 μmol NH3 per mol metal per min at 1 bar and above 550 °C via reduction of Mn6N2.58 to Mn4N and hydrogenation of Ca3N2 and Sr2N to Ca2NH and SrH2, respectively.
机译:许多非均相催化剂的活性受到活化能和反应中间体吸附能之间强相关性的限制。尽管该反应在环境温度和压力下在热力学上是有利的,但是从N2和H2催化合成氨(NH3),化肥和化学燃料需要化学工业中一些最极端的条件。我们演示了如何在环境压力下由空气,水和浓阳光中产生氨,作为过程热的可再生来源,方法是使用环状金属氮化物还原氮,然后将晶格氮单独氢化为氨。当设计具有所需活化能和吸附能的催化剂时,将氨合成分为两个反应步骤会带来额外的自由度。我们讨论了碱金属和碱土金属氮化物的氢化以及过渡金属氮化物的还原,以概述晶格氢在氨生成中的促进作用。这可以通过电子结构计算来合理化,其中氮空位的活性控制着氢的氧化还原插层以及吸附氮物种的形成和氢化。通过将Mn6N2.58还原为Mn4N以及将Ca3N2和Sr2N分别氢化成Ca2NH和SrH2,在1巴及高于550°C的温度下,每摩尔金属每分钟每分钟金属释放56.3、80.7和128μmolNH3的实验证实了预测的趋势。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号