首页> 美国卫生研究院文献>Computational and Structural Biotechnology Journal >Approaches to Determination of a Full Profile of Blood Group Genotypes: Single Nucleotide Variant Mapping and Massively Parallel Sequencing
【2h】

Approaches to Determination of a Full Profile of Blood Group Genotypes: Single Nucleotide Variant Mapping and Massively Parallel Sequencing

机译:确定血型基因型完整档案的方法:单核苷酸变异定位和大规模平行测序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The number of blood group systems, currently 35, has increased in the recent years as genetic variations defining red cell antigens continue to be discovered. At present, 44 genes and 1568 alleles have been defined as encoding antigens within the 35 blood group systems. This paper provides a brief overview of two genetic technologies: single nucleotide variant (SNV) mapping by DNA microarray and massively parallel sequencing, with respect to blood group genotyping. The most frequent genetic change associated with blood group antigens are SNVs. To predict blood group antigen phenotypes, SNV mapping which involves highly multiplexed genotyping, can be performed on commercial microarray platforms. Microarrays detect only known SNVs, therefore, to type rare or novel alleles not represented in the array, further Sanger sequencing of the region is often required to resolve genotype. An example discussed in this article is the identification of rare and novel RHD alleles in the Australian population. Massively parallel sequencing, also known as next generation sequencing, has a high-throughput capacity and maps all points of variation from a reference sequence, allowing for identification of novel SNVs. Examples of the application of this technology to resolve the genetic basis of orphan blood group antigens are presented here. Overall, the determination of a full profile of blood group SNVs, in addition to serological phenotyping, provides a basis for provision of compatible blood thus offering improved transfusion safety.
机译:近年来,随着继续发现定义红细胞抗原的遗传变异,血型系统的数量增加了35个。目前,已经在35个血型系统中定义了44个基因和1568个等位基因编码抗原。本文简要概述了两种遗传技术:关于血型基因分型的DNA芯片单核苷酸变异(SNV)定位和大规模平行测序。与血型抗原相关的最常见的遗传变化是SNV。为了预测血型抗原表型,可以在商业微阵列平台上进行涉及高度多重基因分型的SNV作图。微阵列仅检测已知的SNV,因此,要键入阵列中未显示的稀有或新型等位基因,通常需要对该区域进行进一步的Sanger测序才能解析基因型。本文讨论的一个例子是在澳大利亚人群中鉴定罕见和新颖的RHD等位基因。大规模并行测序,也称为下一代测序,具有高通量的能力,可映射参考序列的所有变异点,从而鉴定出新颖的SNV。本文介绍了该技术解决孤儿血型抗原遗传基础的应用实例。总体而言,除了血清学表型分析外,确定血型SNV的完整概况还为提供兼容血液提供了基础,从而提高了输血安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号