首页> 美国卫生研究院文献>World Journal of Biological Chemistry >Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters
【2h】

Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

机译:染色质边界元素组织果蝇Hox簇中的基因组结构和发育基因调控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development.
机译:真核生物基因组的三维(3D)组织对于其正常功能至关重要。有证据表明,广泛的染色质环构成了基因组结构的基础,将基因和基因簇分为不同的功能域。这些环部分地被称为染色质边界元件(CBE)的一种特殊类型的DNA元件锚定。最初发现CBE通过阻断转录增强子或沉默染色质的扩散来隔离邻近的基因。但是,最近的结果表明,染色质环也可以通过环出中间DNA并将“远程增强子”传递给基因启动子,在基因调控中发挥积极作用。此外,来自人类和模型生物的研究表明,染色质环的结构在细胞分化过程中受到动态调节,其中许多染色质环受CBE束缚。特别是,Li等人最近的一项研究表明,位于果蝇Hox簇中的SF1边界通过束缚染色质环的不同子集来调节局部基因:一个子集围住了一个邻近的基因ftz,从而限制了周围Scr对它的访问在早期胚胎发生过程中增强子并抑制阻抑组蛋白的扩散;其他循环将Scr调控区域细分为增强子可及性的独立域。这些CBE元素的增强剂阻断活性在强度和组织分布上有很大差异。此外,SF1和SF2的串联配对有助于绕过转基因果蝇中的远端增强子,从而为内源性增强子提供了一种机制,可避免染色体重排导致的基因组中断。这项研究证明了由SF1集中组织的染色质边界网络如何能够重塑3D基因组,以促进发育过程中的基因调控。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号