首页> 美国卫生研究院文献>Theranostics >Optimization of Optical Excitation of Upconversion Nanoparticles for Rapid Microscopy and Deeper Tissue Imaging with Higher Quantum Yield
【2h】

Optimization of Optical Excitation of Upconversion Nanoparticles for Rapid Microscopy and Deeper Tissue Imaging with Higher Quantum Yield

机译:用于快速显微镜和具有更高量子产率的更深组织成像的上转换纳米粒子的光激发优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Relatively low quantum yield (QY), time-consuming scanning and strong absorption of light in tissue are some of the issues present in the development of upconversion nanoparticles (UCNPs) for biomedical applications. In this paper we systematically optimize several aspects of optical excitation of UCNPs to improve their applicability in bioimaging and biotherapy. A novel multi-photon evanescent wave (EW) excitation modality is proposed for UCNP-based microscopy. The scanning-free, ultrahigh contrast and high spatiotemporal resolution method could simultaneously track a few particles in a large area with a speed of up to 350 frames per second. The HeLa cancer cell membrane imaging was successfully performed using NaYF4: 20% Yb3+/2% Er3+ targeting nanoparticles. Studies with different tissues were made to illustrate the impact of optical property parameters on the deep imaging ability of 920-nm band excitation. In the experiments a semiconductor laser with a 920 nm wavelength was used to excite UCNPs in tissue phantom at five depths. Our experimental and computational results have shown that in UCNP-based diffusion optical imaging with 920-nm laser excitation could lead to larger imaging depth range compared to traditional 974-nm excitation in a wide dynamic range of tissue species. As the QY is power density dependent, a pulsed laser is proposed to improve the QY of UCNPs. This proposal is promising in drastically increasing the imaging depth and efficiency of photodynamic therapy.
机译:相对较低的量子产率(QY),耗时的扫描和组织中光的强吸收是用于生物医学应用的上转换纳米颗粒(UCNP)开发中的一些问题。在本文中,我们系统地优化了UCNPs的光激发的几个方面,以提高其在生物成像和生物治疗中的适用性。针对基于UCNP的显微镜,提出了一种新颖的多光子e逝波(EW)激发方式。免扫描,超高对比度和高时空分辨率的方法可以以高达350帧/秒的速度同时跟踪大面积的一些粒子。使用NaYF4:20%Yb 3 + / 2%Er 3 + 靶向纳米粒子成功完成了HeLa癌细胞膜成像。进行了不同组织的研究,以说明光学特性参数对920 nm波段激发的深层成像能力的影响。在实验中,使用波长为920 nm的半导体激光器在五个深度激发组织体模中的UCNP。我们的实验和计算结果表明,与传统的974 nm激发相比,在宽动态范围的组织物种中,使用920 nm激光激发的基于UCNP的扩散光学成像可能会导致更大的成像深度范围。由于QY与功率密度有关,因此提出了一种脉冲激光器来改善UCNP的QY。该提议有望大大提高光动力疗法的成像深度和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号