首页> 美国卫生研究院文献>Structural Dynamics >SVD-aided non-orthogonal decomposition (SANOD) method to exploit prior knowledge of spectral components in the analysis of time-resolved data
【2h】

SVD-aided non-orthogonal decomposition (SANOD) method to exploit prior knowledge of spectral components in the analysis of time-resolved data

机译:SVD辅助的非正交分解(SANOD)方法在分析时间分辨数据时利用光谱成分的先验知识

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Analysis of time-resolved data typically involves discriminating noise against the signal and extracting time-independent components and their time-dependent contributions. Singular value decomposition (SVD) serves this purpose well, but the extracted time-independent components are not necessarily the physically meaningful spectra directly representing the actual dynamic or kinetic processes but rather a mathematically orthogonal set necessary for constituting the physically meaningful spectra. Converting the orthogonal components into physically meaningful spectra requires subsequent posterior analyses such as linear combination fitting (LCF) and global fitting (GF), which takes advantage of prior knowledge about the data but requires that all components are known or satisfactory components are guessed. Since in general not all components are known, they have to be guessed and tested via trial and error. In this work, we introduce a method, which is termed SVD-aided Non-Orthogonal Decomposition (SANOD), to circumvent trial and error. The key concept of SANOD is to combine the orthogonal components from SVD with the known prior knowledge to fill in the gap of the unknown signal components and to use them for LCF. We demonstrate the usefulness of SANOD via applications to a variety of cases.
机译:时间分辨数据的分析通常涉及根据信号区分噪声,并提取与时间无关的分量及其与时间有关的贡献。奇异值分解(SVD)很好地达到了此目的,但是提取的时间无关组件不一定是直接表示实际动态过程或动力学过程的物理意义上的光谱,而是构成物理意义上的光谱所必需的数学正交集。将正交分量转换为物理上有意义的光谱需要进行后续的后验分析,例如线性组合拟合(LCF)和全局拟合(GF),这需要利用有关数据的先验知识,但需要知道所有分量或猜测出令人满意的分量。由于通常并非所有组件都是已知的,因此必须通过反复试验来猜测和测试它们。在这项工作中,我们介绍了一种称为SVD辅助的非正交分解(SANOD)的方法来规避试验和错误。 SANOD的关键概念是将SVD中的正交分量与已知的先验知识相结合,以填充未知信号分量的间隙并将其用于LCF。我们通过在各种情况下的应用展示了SANOD的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号