首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Engineering and Evolution of Synthetic Adeno-Associated Virus (AAV) Gene Therapy Vectors via DNA Family Shuffling
【2h】

Engineering and Evolution of Synthetic Adeno-Associated Virus (AAV) Gene Therapy Vectors via DNA Family Shuffling

机译:通过DNA家族改组合成腺相关病毒(AAV)基因治疗载体的工程和进化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adeno-associated viral (AAV) vectors represent some of the most potent and promising vehicles for therapeutic human gene transfer due to a unique combination of beneficial properties1. These include the apathogenicity of the underlying wildtype viruses and the highly advanced methodologies for production of high-titer, high-purity and clinical-grade recombinant vectors2. A further particular advantage of the AAV system over other viruses is the availability of a wealth of naturally occurring serotypes which differ in essential properties yet can all be easily engineered as vectors using a common protocol1,2. Moreover, a number of groups including our own have recently devised strategies to use these natural viruses as templates for the creation of synthetic vectors which either combine the assets of multiple input serotypes, or which enhance the properties of a single isolate. The respective technologies to achieve these goals are either DNA family shuffling3, i.e. fragmentation of various AAV capsid genes followed by their re-assembly based on partial homologies (typically >80% for most AAV serotypes), or peptide display4,5, i.e. insertion of usually seven amino acids into an exposed loop of the viral capsid where the peptide ideally mediates re-targeting to a desired cell type. For maximum success, both methods are applied in a high-throughput fashion whereby the protocols are up-scaled to yield libraries of around one million distinct capsid variants. Each clone is then comprised of a unique combination of numerous parental viruses (DNA shuffling approach) or contains a distinctive peptide within the same viral backbone (peptide display approach). The subsequent final step is iterative selection of such a library on target cells in order to enrich for individual capsids fulfilling most or ideally all requirements of the selection process. The latter preferably combines positive pressure, such as growth on a certain cell type of interest, with negative selection, for instance elimination of all capsids reacting with anti-AAV antibodies. This combination increases chances that synthetic capsids surviving the selection match the needs of the given application in a manner that would probably not have been found in any naturally occurring AAV isolate. Here, we focus on the DNA family shuffling method as the theoretically and experimentally more challenging of the two technologies. We describe and demonstrate all essential steps for the generation and selection of shuffled AAV libraries (>Fig. 1), and then discuss the pitfalls and critical aspects of the protocols that one needs to be aware of in order to succeed with molecular AAV evolution.
机译:腺相关病毒(AAV)载体是有益特性 1 的独特组合,代表了一些最有力和最有希望的治疗性人类基因转移载体。其中包括潜在的野生型病毒的无源性和生产高滴度,高纯度和临床级重组载体 2 的高度先进的方法。与其他病毒相比,AAV系统的另一个特殊优势是可获得大量自然存在的血清型,这些血清型的基本特性不同,但都可以使用通用协议 1,2 轻松将其设计为载体。而且,包括我们自己在内的许多团体最近设计了使用这些天然病毒作为模板来创建合成载体的策略,这些合成载体结合了多种输入血清型的资产或增强了单个分离株的特性。实现这些目标的相应技术是DNA家族改组 3 ,即各种AAV衣壳基因的片段化,然后根据部分同源性重新组装(对于大多数AAV血清型,通常> 80%),或者肽展示 4,5 ,即通常将七个氨基酸插入病毒衣壳的裸露环中,在该环中,肽理想地介导重新靶向所需的细胞类型。为了获得最大的成功,这两种方法都以高通量方式应用,从而使协议规模扩大以产生大约一百万个不同的衣壳变异体的文库。然后,每个克隆均由众多亲本病毒的独特组合(DNA改组方法)组成,或在同一病毒主链内包含独特的肽(肽展示方法)。随后的最后一步是在目标细胞上迭代选择此类文库,以富集满足大多数或理想情况下所有选择过程要求的衣壳。后者优选地将正压(例如在感兴趣的某种细胞类型上的生长)与负选择相结合,例如消除与抗AAV抗体反应的所有衣壳。这种结合增加了在选择中幸存下来的合成衣壳与给定应用的需求相匹配的可能性,其方式可能在任何天然存在的AAV分离株中都找不到。在这里,我们将重点放在DNA家族改组方法上,因为这是两种技术在理论上和实验上都更具挑战性。我们描述并演示了生成和选择经过改编的AAV库的所有基本步骤(>图1 ),然后讨论了人们需要了解的协议的陷阱和关键方面。分子AAV进化成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号