首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Imaging Odor-Evoked Activities in the Mouse Olfactory Bulb using Optical Reflectance and Autofluorescence Signals
【2h】

Imaging Odor-Evoked Activities in the Mouse Olfactory Bulb using Optical Reflectance and Autofluorescence Signals

机译:使用光反射和自发荧光信号成像小鼠嗅球中的气味诱发活动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain.Here, we present two techniques based on changes of endogenous optical properties of the brain tissue during activation. First the intrinsic optical signals (IOS) are produced by a local alteration in red light reflectance due to: (i) absorption by changes in blood oxygenation level and blood volume (ii) photon scattering. The use of in vivo IOS to record spatial maps started in the mid 1980's with the observation of optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex1. IOS imaging of the surface of the rodent main olfactory bulb (OB) in response to odorants was later demonstrated by Larry Katz's group2. The second approach relies on flavoprotein autofluorescence signals (FAS) due to changes in the redox state of these mitochondrial metabolic intermediates. More precisely, the technique is based on the green fluorescence due to oxidized state of flavoproteins when the tissue is excited with blue light. Although such signals were probably among the first fluorescent molecules recorded for the study of brain activity by the pioneer studies of Britton Chances and colleagues3, it was not until recently that they have been used for mapping of brain activation in vivo. FAS imaging was first applied to the somatosensory cortex in rodents in response to hindpaw stimulation by Katsuei Shibuki's group4.The olfactory system is of central importance for the survival of the vast majority of living species because it allows efficient detection and identification of chemical substances in the environment (food, predators). The OB is the first relay of olfactory information processing in the brain. It receives afferent projections from the olfactory primary sensory neurons that detect volatile odorant molecules. Each sensory neuron expresses only one type of odorant receptor and neurons carrying the same type of receptor send their nerve processes to the same well-defined microregions of ˜100μm3 constituted of discrete neuropil, the olfactory glomerulus >(Fig. 1). In the last decade, IOS imaging has fostered the functional exploration of the OB5, 6, 7 which has become one of the most studied sensory structures. The mapping of OB activity with FAS imaging has not been performed yet.Here, we show the successive steps of an efficient protocol for IOS and FAS imaging to map odor-evoked activities in the mouse OB.
机译:在大脑中,感觉刺激激活了参与刺激编码的功能模块之间的神经元分布群体。功能性光学成像技术有利于以高空间分辨率可视化感觉皮层中这些模块的激活。在这种情况下,由与神经能量学相关的分子机制产生的内源性光信号是有价值的对比来源,可用于在啮齿动物大脑的广阔视野中记录感觉刺激的空间图。在此,我们提出了两种基于内源性光学特性变化的技术激活期间的脑组织。首先,固有的光学信号(IOS)是由于以下原因引起的红光反射率的局部变化产生的:(i)通过血液氧合水平和血容量的变化吸收(ii)光子散射。使用体内IOS记录空间图始于1980年代中期,首先观察了大鼠晶须桶的光学图,并观察了猫视皮层 1 的方向列。 Larry Katz的研究组 2 随后证实了啮齿动物主嗅球(OB)表面对气味的响应的IOS成像。第二种方法依赖于黄素蛋白自发荧光信号(FAS),因为这些线粒体代谢中间体的氧化还原状态发生了变化。更准确地说,该技术基于当组织被蓝光激发时由于黄素蛋白的氧化状态而产生的绿色荧光。尽管此类信号可能是Britton Chances及其同事 3 的先驱研究记录的第一个用于研究脑活动的荧光分子之一,但直到最近才将它们用于绘制大脑活动图谱。体内。首先,FAS成像是响应胜桂志树(Katsuei Shibuki)的 4 小组的后爪刺激而应用于啮齿动物的体感皮层的。嗅觉系统对于绝大多数生物的生存至关重要,因为它可以有效检测和识别环境中的化学物质(食物,天敌)。 OB是大脑中嗅觉信息处理的第一个中继。它接收来自嗅觉主要感觉神经元的传入投影,以检测挥发性气味分子。每个感觉神经元仅表达一种类型的气味受体,携带相同类型受体的神经元将其神经过程发送至由离散的神经纤维(嗅觉肾小球>)组成的〜1​​00μm 3 的明确定义的微区。 >(图1)。在过去的十年中,IOS成像促进了OB 5、6、7 的功能探索,而OB 5、6、7 已成为研究最多的感觉结构之一。尚未通过FAS成像完成OB活动的映射。在这里,我们展示了用于IOS和FAS成像的有效协议的连续步骤,以绘制鼠标OB中的气味诱发的活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号