首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Pharmacological and Functional Genetic Assays to Manipulate Regeneration of the Planarian Dugesia japonica
【2h】

Pharmacological and Functional Genetic Assays to Manipulate Regeneration of the Planarian Dugesia japonica

机译:药理和功能遗传测定以操纵扁Plan的再生。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Free-living planarian flatworms have a long history of experimental usage owing to their remarkable regenerative abilities1. Small fragments excised from these animals reform the original body plan following regeneration of missing body structures. For example if a 'trunk' fragment is cut from an intact worm, a new 'head' will regenerate anteriorly and a 'tail' will regenerate posteriorly restoring the original 'head-to-tail' polarity of body structures prior to amputation (>Figure 1A).Regeneration is driven by planarian stem cells, known as 'neoblasts' which differentiate into ~30 different cell types during normal body homeostasis and enforced tissue regeneration. This regenerative process is robust and easy to demonstrate. Owing to the dedication of several pioneering labs, many tools and functional genetic methods have now been optimized for this model system. Consequently, considerable recent progress has been made in understanding and manipulating the molecular events underpinning planarian developmental plasticity2-9.The planarian model system will be of interest to a broad range of scientists. For neuroscientists, the model affords the opportunity to study the regeneration of an entire nervous system, rather than simply the regrowth/repair of single nerve cell process that typically are the focus of study in many established models. Planarians express a plethora of neurotransmitters10, represent an important system for studying evolution of the central nervous system11, 12 and have behavioral screening potential13, 14. Regenerative outcomes are amenable to manipulation by pharmacological and genetic apparoaches. For example, drugs can be screened for effects on regeneration simply by placing body fragments in drug-containing solutions at different time points after amputation. The role of individual genes can be studied using knockdown methods (in vivo RNAi), which can be achieved either through cycles of microinjection or by feeding bacterially-expressed dsRNA constructs8, 9, 15. Both approaches can produce visually striking phenotypes at high penetrance- for example, regeneration of bipolar animals16-21. To facilitate adoption of this model and implementation of such methods, we showcase in this video article protocols for pharmacological and genetic assays (in vivo RNAi by feeding) using the planarian Dugesia japonica.
机译:自由生活的涡虫扁虫由于具有显着的再生能力 1 而具有悠久的实验应用历史。从这些动物身上切除的小碎片会在缺少的身体结构再生后重新形成原始的身体计划。例如,如果从完整的蠕虫上切除了一个``树干''片段,那么一个新的``头部''将在前面再生,而一个``尾巴''将在后面进行再生,从而在截肢之前恢复了身体结构的原始``头对尾''极性(< strong>图1A )。再生受涡虫干细胞(称为“成神经细胞”)驱动,在正常人体体内稳态过程中分化为约30种不同的细胞类型,并强迫组织再生。这个再生过程是健壮的并且易于证明。由于几个开创性实验室的奉献精神,现在已经为此模型系统优化了许多工具和功能遗传方法。因此,在理解和操纵支撑涡虫发展可塑性 2-9 的分子事件方面,最近取得了相当大的进展。涡虫模型系统将引起广泛的科学家兴趣。对于神经科学家而言,该模型提供了研究整个神经系统再生的机会,而不仅仅是简单地在许多已建立的模型中研究重点的单神经细胞过程的再生/修复。平面动物表达大量的神经递质 10 ,是研究中枢神经系统进化的重要系统 11,12 ,并且具有行为筛查潜能 13,14。 / sup>再生结果易于通过药理和遗传手段进行操作。例如,只需在截肢后的不同时间点将身体碎片放在含药物的溶液中,就可以筛选药物对再生的影响。可以使用敲低方法(体内RNAi)研究单个基因的作用,该方法可以通过显微注射循环或通过喂入细菌表达的dsRNA构建体来实现[sup> 8、9、15 。两种方法都可以在高渗透率下产生视觉上醒目的表型,例如双极动物的再生 16-21 。为促进采用此模型和实现此类方法,我们在此视频文章中展示了使用the虫的日本药进行药理和遗传测定(通过进食的体内RNAi)的规程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号