首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves
【2h】

Influence of the Spatial Dimensions of Ultrasonic Transducers on the Frequency Spectrum of Guided Waves

机译:超声波换能器的空间尺寸对导波频谱的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain and predict the response spectrum of guided waves throughout the development of any structural health monitoring system.
机译:基于超声波导波(UGW)的状态监测在检测,定位和表征复杂系统中的损坏方面显示出了巨大的希望。然而,由于存在多种模式和色散,将导波应用到损伤检测中具有挑战性。这导致失真的波包具有有限的分辨率以及多种反射模式的干扰。为了开发可靠的检查系统,要么必须优化换能器以生成具有已知色散特性的期望的单个导波模式,要么必须知道结构中存在的所有模式的频率响应才能预测波的相互作用。当前,缺乏预测导波模式响应谱的方法,尤其是在同时激发多个模式的情况下。这样的方法对于进一步了解结构中的波传播以及波损伤相互作用至关重要。在这项研究中,基于傅里叶分析激发区域上的粒子速度分布,提出了一种预测导波模式响应谱的新方法。本研究中提出的方法基于换能器的空间尺寸,振动类型和介质的分散特性来估计兴奋性函数。结果,可以分别获得结构中存在的每个导波模式的响应幅度与频率的函数关系。该方法已通过对铝和玻璃纤维复合材料样品的数值模拟进行了验证。关键发现表明,它可以用于估算导波模式在任何类型的材料(各向同性结构或多层各向异性复合材料)上以及在任何类型的激励下(如果相速度色散曲线和粒子都为)的响应谱。最初知道波源的速度分布。因此,所提出的方法可能是解释和预测整个结构健康监测系统开发过程中导波响应谱的有益工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号