首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Window on a Microworld: Simple Microfluidic Systems for Studying Microbial Transport in Porous Media
【2h】

Window on a Microworld: Simple Microfluidic Systems for Studying Microbial Transport in Porous Media

机译:微型世界的窗口:用于研究多孔介质中微生物迁移的简单微流体系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial growth and transport in porous media have important implications for the quality of groundwater and surface water, the recycling of nutrients in the environment, as well as directly for the transmission of pathogens to drinking water supplies. Natural porous media is composed of an intricate physical topology, varied surface chemistries, dynamic gradients of nutrients and electron acceptors, and a patchy distribution of microbes. These features vary substantially over a length scale of microns, making the results of macro-scale investigations of microbial transport difficult to interpret, and the validation of mechanistic models challenging. Here we demonstrate how simple microfluidic devices can be used to visualize microbial interactions with micro-structured habitats, to identify key processes influencing the observed phenomena, and to systematically validate predictive models. Simple, easy-to-use flow cells were constructed out of the transparent, biocompatible and oxygen-permeable material poly(dimethyl siloxane). Standard methods of photolithography were used to make micro-structured masters, and replica molding was used to cast micro-structured flow cells from the masters. The physical design of the flow cell chamber is adaptable to the experimental requirements: microchannels can vary from simple linear connections to complex topologies with feature sizes as small as 2 μm. Our modular EcoChip flow cell array features dozens of identical chambers and flow control by a gravity-driven flow module. We demonstrate that through use of EcoChip devices, physical structures and pressure heads can be held constant or varied systematically while the influence of surface chemistry, fluid properties, or the characteristics of the microbial population is investigated. Through transport experiments using a non-pathogenic, green fluorescent protein-expressing Vibrio bacterial strain, we illustrate the importance of habitat structure, flow conditions, and inoculums size on fundamental transport phenomena, and with real-time particle-scale observations, demonstrate that microfluidics offer a compelling view of a hidden world.
机译:微生物在多孔介质中的生长和运输对地下水和地表水的质量,环境中养分的循环利用以及病原体向饮用水源的直接传播具有重要意义。天然多孔介质由复杂的物理拓扑结构,变化的表面化学组成,营养物质和电子受体的动态梯度以及微生物的片状分布组成。这些特征在微米的长度尺度上变化很大,使得微生物转运的宏观研究结果难以解释,并且对机械模型的验证也颇具挑战性。在这里,我们演示了如何使用简单的微流控设备可视化微生物与微结构化栖息地的相互作用,识别影响观察到的现象的关键过程以及系统地验证预测模型。简单,易于使用的流通池是由透明的,生物相容性和氧气可渗透的材料聚(二甲基硅氧烷)制成的。使用光刻的标准方法来制作微结构的母版,并使用复制成型法从母版中铸造微结构的流通池。流通池腔室的物理设计可适应实验要求:微通道可以从简单的线性连接到特征尺寸小至2μm的复杂拓扑,都可以变化。我们的模块化EcoChip流通池阵列具有数十个相同的腔室,并通过重力驱动的流量模块进行流量控制。我们证明,通过使用EcoChip设备,可以在研究表面化学,流体性质或微生物种群特征的影响时,使物理结构和压头保持恒定或系统地变化。通过使用表达非致病性,绿色荧光蛋白的弧菌细菌菌株的运输实验,我们说明了生境结构,流动条件和接种物大小对基本运输现象的重要性,并通过实时粒度观察,证明了微流体提供有关隐藏世界的引人注目的视图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号