首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy
【2h】

Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

机译:散射介质吸收光谱中气体的光程确定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gas in scattering media absorption spectroscopy (GASMAS) has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor), the pathlength of which can then be obtained and used for the target gas (e.g., oxygen) to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique.
机译:近年来,散射介质吸收光谱法(GASMAS)中的气体已得到广泛研究,并应用于例如食品包装,人鼻窦监测,气体扩散研究和药物片剂表征。重点一直放在多孔介质中气体吸收路径长度的评估上,由于大量的光散射,先验未知。本文总结了三种不同的方法。一种可能性是同时监视另一种已知浓度的气体(例如水蒸气),然后可以获取其光程并用于目标气体(例如氧气)以获取其浓度。第二种方法是使用其他方法(包括飞行时间光谱法,调频光散射干涉法和频域光子迁移法)测量平均光程或物理光程。通过使用这些方法,可以获得平均浓度并研究材料的孔隙率。最后一种方法是通过分析气体吸收线的形状来检索气体浓度,而不知道其光程长度,该形状取决于分子间碰撞导致的缓冲气体浓度。由于多次散射而产生的路径长度增强效果还使得能够将多孔介质用作多道气室,以进行痕量气体监测。所有这些努力为GASMAS技术开辟了许多不同的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号