首页> 美国卫生研究院文献>Science and Technology of Advanced Materials >An innovative energy-saving in-flight melting technology and its application to glass production
【2h】

An innovative energy-saving in-flight melting technology and its application to glass production

机译:一种创新的节能机上熔融技术及其在玻璃生产中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The conventional method used for glass melting is air-fuel firing, which is inefficient, energy-intensive and time-consuming. In this study, an innovative in-flight melting technology was developed and applied to glass production for the purposes of energy conservation and environmental protection. Three types of heating sources, radio-frequency (RF) plasma, a 12-phase alternating current (ac) arc and an oxygen burner, were used to investigate the in-flight melting behavior of granulated powders. Results show that the melted particles are spherical with a smooth surface and compact structure. The diameter of the melted particles is about 50% of that of the original powders. The decomposition and vitrification degrees of the prepared powders decrease in the order of powders prepared by RF plasma, the 12-phase ac arc and the oxygen burner. The largest heat transfer is from RF plasma to particles, which results in the highest particle temperature (1810 °C) and the greatest vitrification degree of the raw material. The high decomposition and vitrification degrees, which are achieved in milliseconds, shorten the melting and fining times of the glass considerably. Our results indicate that the proposed in-flight melting technology is a promising method for use in the glass industry.
机译:用于玻璃熔化的常规方法是空燃,其效率低,耗能且耗时。在这项研究中,开发了一种创新的机上熔化技术,并将其应用于玻璃生产,以实现节能和环境保护的目的。三种类型的加热源,即射频(RF)等离子体,12相交流(ac)电弧和氧气燃烧器,用于研究颗粒状粉末的飞行中熔化行为。结果表明,熔融颗粒呈球形,表面光滑,结构致密。熔融颗粒的直径约为原始粉末的直径的50%。所制备粉末的分解程度和玻璃化程度按射频等离子体,十二相交流电弧和氧气燃烧器制备的粉末顺序减小。最大的热传递是从RF等离子体到颗粒的传递,这导致最高的颗粒温度(1810°C)和最大的玻璃化程度。以毫秒为单位的高分解度和玻璃化度大大缩短了玻璃的熔化和澄清时间。我们的结果表明,建议的机上熔融技术是用于玻璃工业的一种有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号