首页> 美国卫生研究院文献>Science Advances >Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system
【2h】

Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system

机译:高盐环境中独特的离子整流:高性能且可持续的发电系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of membrane science plays a fundamental role in harvesting osmotic power, which is considered a future clean and renewable energy source. However, the existing designs of the membrane cannot handle the low conversion efficiency and power density. Theory has predicted that the Janus membrane with ionic diode–type current would be the most efficient material. Therefore, rectified ionic transportation in a hypersaline environment (the salt concentration is at least 0.5 M in sea) is highly desired, but it still remains a challenge. Here, we demonstrate a versatile strategy for creating a scale-up Janus three-dimensional (3D) porous membrane–based osmotic power generator system. Janus membranes with tunable surface charge density and porosity were obtained by compounding two kinds of ionomers. Under electric fields or chemical gradients, the Janus membrane has ionic current rectification properties and anion selectivities in a hypersaline environment. Experiments and theoretical calculation demonstrate that abundant surface charge and narrow pore size distribution benefit this unique ionic transport behavior in high salt solution. Thus, the output power density of this membrane-based generator reaches 2.66 W/m2 (mixing seawater and river water) and up to 5.10 W/m2 at a 500-fold salinity gradient (i.e., flowing salt lake into river water). Furthermore, a generator, built by connecting a series of membranes, could power a calculator for 120 hours without obvious current decline, proving the excellent physical and chemical stabilities. Therefore, we believe that this work advances the fundamental understanding of fluid transport and materials design as a paradigm for a high-performance energy conversion generator.
机译:膜科学的发展在获取渗透力方面起着基本作用,渗透力被认为是未来的清洁和可再生能源。然而,现有的膜设计不能应对低转换效率和功率密度。理论预测,带有离子二极管型电流的Janus膜将是最有效的材料。因此,非常需要在高盐环境中(海中的盐浓度至少为0.5 M)进行离子迁移,但仍然面临挑战。在这里,我们演示了一种用于创建按比例放大的Janus三维(3D)多孔膜基渗透压发电系统的通用策略。通过将两种离聚物混合,获得具有可调的表面电荷密度和孔隙率的Janus膜。在电场或化学梯度下,Janus膜在高盐环境中具有离子电流整流特性和阴离子选择性。实验和理论计算表明,高盐溶液中丰富的表面电荷和狭窄的孔径分布有利于这种独特的离子迁移行为。因此,这种基于膜的发电机的输出功率密度在500℃时达到2.66 W / m 2 (将海水和河水混合),最高达到5.10 W / m 2 。倍盐度梯度(即盐湖流入河水)。此外,通过连接一系列膜而构建的发电机可以为计算器供电120小时,而不会出现明显的电流下降,证明了出色的物理和化学稳定性。因此,我们相信这项工作将提高对流体传输和材料设计的基本了解,将其作为高性能能量转换发生器的范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号