首页> 美国卫生研究院文献>Science Advances >Artificial solid electrolyte interphase for aqueous lithium energy storage systems
【2h】

Artificial solid electrolyte interphase for aqueous lithium energy storage systems

机译:用于含水锂储能系统的人造固体电解质中间相

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aqueous lithium energy storage systems address environmental sustainability and safety issues. However, significant capacity fading after repeated cycles of charge-discharge and during float charge limit their practical application compared to their nonaqueous counterparts. We introduce an artificial solid electrolyte interphase (SEI) to the aqueous systems and report the use of graphene films as an artificial SEI (G-SEI) that substantially enhance the overall performance of an aqueous lithium battery and a supercapacitor. The thickness (1 to 50 nm) and the surface area (1 cm2 to 1 m2) of the G-SEI are precisely controlled on the LiMn2O4-based cathode using the Langmuir trough–based techniques. The aqueous battery with a 10-nm-thick G-SEI exhibits a discharge capacity as high as 104 mA·hour g−1 after 600 cycles and a float charge current density as low as 1.03 mA g−1 after 1 day, 26% higher (74 mA·hour g−1) and 54% lower (1.88 mA g−1) than the battery without the G-SEI, respectively. We propose that the G-SEI on the cathode surface simultaneously suppress the structural distortion of the LiMn2O4 (the Jahn-Teller distortion) and the oxidation of conductive carbon through controlled diffusion of Li+ and restricted permeation of gases (O2 and COx), respectively. The G-SEI on both small (~1 cm2 in 1.15 mA·hour cell) and large (~9 cm2 in 7 mA·hour cell) cathodes exhibit similar property enhancement, demonstrating excellent potential for scale-up and manufacturing.
机译:含水锂储能系统解决了环境可持续性和安全性问题。然而,与非水相比较,充放电反复循环后和浮充期间显着的容量衰减限制了它们的实际应用。我们将人工固体电解质中间相(SEI)引入到水性体系中,并报告了石墨烯薄膜作为人工SEI(G-SEI)的使用,该膜大大增强了水性锂电池和超级电容器的整体性能。使用LiMn2O4基阴极精确控制G-SEI的厚度(1至50 nm)和表面积(1 cm 2 至1 m 2 )基于Langmuir槽的技术。厚度为10 nm的G-SEI的水性电池在600次循环后的放电容量高达104 mA·小时g -1 ,浮充电流密度低至1.03 mA g < sup> -1 1天后,比74 mA·hour g -1 高26%,比1.88 mA g -1 低54%没有G-SEI的电池。我们建议,通过控制Li + 的扩散和限制气体的渗透,阴极表面的G-SEI可以同时抑制LiMn2O4的结构变形(Jahn-Teller变形)和导电碳的氧化(O2和COx)。小型(1.15 mA·小时电池中的〜1 cm 2 )和大型(7 mA·小时电池中的〜9 cm 2 )阴极上的G-SEI表现出相似的增强的特性,显示出扩大规模和制造的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号