首页> 美国卫生研究院文献>Science Advances >Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy
【2h】

Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy

机译:用17O固态NMR光谱法鉴定氧化物纳米结构中的不同氧种类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanostructured oxides find multiple uses in a diverse range of applications including catalysis, energy storage, and environmental management, their higher surface areas, and, in some cases, electronic properties resulting in different physical properties from their bulk counterparts. Developing structure-property relations for these materials requires a determination of surface and subsurface structure. Although microscopy plays a critical role owing to the fact that the volumes sampled by such techniques may not be representative of the whole sample, complementary characterization methods are urgently required. We develop a simple nuclear magnetic resonance (NMR) strategy to detect the first few layers of a nanomaterial, demonstrating the approach with technologically relevant ceria nanoparticles. We show that the 17O resonances arising from the first to third surface layer oxygen ions, hydroxyl sites, and oxygen species near vacancies can be distinguished from the oxygen ions in the bulk, with higher-frequency 17O chemical shifts being observed for the lower coordinated surface sites. H217O can be used to selectively enrich surface sites, allowing only these particular active sites to be monitored in a chemical process. 17O NMR spectra of thermally treated nanosized ceria clearly show how different oxygen species interconvert at elevated temperature. Density functional theory calculations confirm the assignments and reveal a strong dependence of chemical shift on the nature of the surface. These results open up new strategies for characterizing nanostructured oxides and their applications.
机译:纳米结构氧化物在多种应用中有多种用途,包括催化,能量存储和环境管理,其较高的表面积以及在某些情况下的电子性能,导致其物理性能与本体氧化物不同。建立这些材料的结构-属性关系需要确定表面和地下结构。尽管由于这种技术采样的体积可能不能代表整个样品的事实,显微镜起着至关重要的作用,但迫切需要互补的表征方法。我们开发了一种简单的核磁共振(NMR)策略来检测纳米材料的前几层,从而证明了使用具有技术意义的二氧化铈纳米颗粒的方法。我们发现,由第一至第三表面层氧离子,羟基位点和空位附近的氧物种引起的 17 O共振可与本体中的氧离子区分开,其中较高频率的在较低的配位表面位点观察到> 17 O化学位移。 H2 17 O可用于选择性富集表面位点,从而仅允许在化学过程中监控这些特定的活性位点。经过热处理的纳米二氧化铈的 17 O NMR光谱清楚地表明了不同的氧在高温下如何相互转化。密度泛函理论计算证实了这一点,并揭示了化学位移对表面性质的强烈依赖性。这些结果为表征纳米结构氧化物及其应用开辟了新的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号