首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Proline in alpha-helical kink is required for folding kinetics but not for kinked structure function or stability of heat shock transcription factor.
【2h】

Proline in alpha-helical kink is required for folding kinetics but not for kinked structure function or stability of heat shock transcription factor.

机译:折叠动力学需要α-螺旋扭结中的脯氨酸但热激转录因子的扭结结构功能或稳定性则不需要。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The DNA-binding domain of the yeast heat shock transcription factor (HSF) contains a strictly conserved proline that is at the center of a kink. To define the role of this conserved proline-centered kink, we replaced the proline with a number of other residues. These substitutions did not diminish the ability of the full-length protein to support growth of yeast or to activate transcription, suggesting that the proline at the center of the kink is not conserved for function. The stability of the isolated mutant DNA-binding domains was unaltered from the wild-type, so the proline is not conserved to maintain the stability of the protein. The crystal structures of two of the mutant DNA-binding domains revealed that the helices in the mutant proteins were still kinked after substitution of the proline, suggesting that the proline does not cause the alpha-helical kink. So why are prolines conserved in this and the majority of other kinked alpha-helices if not for structure, function, or stability? The mutant DNA-binding domains are less soluble than wild-type when overexpressed. In addition, the folding kinetics, as measured by stopped-flow fluorescence, is faster for the mutant proteins. These two results support the premise that the presence of the proline is critical for the folding pathway of HSF's DNA-binding domain. The finding may also be more general and explain why kinked helices maintain their prolines.
机译:酵母热激转录因子(HSF)的DNA结合结构域包含一个严格保守的脯氨酸,该脯氨酸位于扭结的中心。为了定义这种保守的以脯氨酸为中心的纽结的作用,我们用许多其他残基取代了脯氨酸。这些取代并没有减弱全长蛋白支持酵母生长或激活转录的能力,这表明在扭结中心的脯氨酸不能保守功能。分离的突变DNA结合结构域的稳定性与野生型保持一致,因此脯氨酸不能保守以维持蛋白质的稳定性。两个突变体DNA结合结构域的晶体结构表明,脯氨酸取代后,突变体蛋白中的螺旋仍然扭结,表明脯氨酸不会引起α螺旋扭结。那么,为什么脯氨酸在此结构以及大多数其他扭结的α-螺旋中如果不是出于结构,功能或稳定性的原因而守恒呢?过度表达时,突变型DNA结合域的溶解度低于野生型。另外,突变蛋白的折叠动力学(通过停流荧光测量)更快。这两个结果支持以下前提:脯氨酸的存在对于HSF DNA结合结构域的折叠途径至关重要。该发现也可能更笼统,并解释了为什么扭折的螺旋保持脯氨酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号