首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Structure of a stabilizing disulfide bridge mutant that closes the active-site cleft of T4 lysozyme.
【2h】

Structure of a stabilizing disulfide bridge mutant that closes the active-site cleft of T4 lysozyme.

机译:稳定的二硫键桥突变体的结构该突变体关闭了T4溶菌酶的活性位点裂口。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.
机译:噬菌体T4溶菌酶残基21和142之间的工程二硫键跨越了活性位点裂口,可用作控制该酶活性的开关(Matsumura,M.&Matthews,BW,1989,Science 243,792- 794)。在氧化形式下,二硫化物在pH 2下使蛋白质的解链温度提高11摄氏度。该突变型溶菌酶的晶体结构已确定为还原形式和氧化形式。在还原形式中,突变体的晶体结构显示出与野生型极为相似。但是,在氧化形式下,二硫键的形成会导致活性位点裂隙相对侧的Cys 21和Cys 142的α碳原子彼此相对移动2.5A。蛋白质的氨基末端结构域相对于羧基末端结构域经历了5.1度的刚体旋转。该旋转围绕穿过氨基末端和羧基末端结构域的连接点的轴发生,并且还靠近最适合先前在野生型溶菌酶的晶体中看到的氨基末端结构域的表观热运动的轴。即使工程化的Cys 21-Cys 142二硫键将T4溶菌酶的氨基末端和羧基末端域连接在一起,它也不会降低一个域相对于另一个域的表观迁移率。由野生型溶菌酶的结晶学热参数表明的氨基末端结构域的明显的“铰链弯曲”迁移率在氧化的(和还原的)突变结构中持续存在。在引入的二硫键附近,突变结构比野生型更易移动(或无序),以至于Cys 21的确切构型仍然不清楚。如同先前描述的T4溶菌酶的残基9和164之间的二硫键(Pjura,PE,Matsumura,M.,Wozniak,JA,&Matthews,BW,1990,Biochemistry 29,2592-2598),工程交联基本上是增强了蛋白质的稳定性,而不会使折叠结构更坚硬。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号