首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks
【2h】

PNAS Plus: Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks

机译:PNAS Plus:泛素C末端水解酶L1(UCH-L1)丢失会通过改变产后第一周的蛋白质更新来导致神经退行性变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is one of the most abundant and enigmatic enzymes of the CNS. Based on existing UCH-L1 knockout models, UCH-L1 is thought to be required for the maintenance of axonal integrity, but not for neuronal development despite its high expression in neurons. Several lines of evidence suggest a role for UCH-L1 in mUB homeostasis, although the specific in vivo substrate remains elusive. Since the precise mechanisms underlying UCH-L1–deficient neurodegeneration remain unclear, we generated a transgenic mouse model of UCH-L1 deficiency. By performing biochemical and behavioral analyses we can show that UCH-L1 deficiency causes an acceleration of sensorimotor reflex development in the first postnatal week followed by a degeneration of motor function starting at periadolescence in the setting of normal cerebral mUB levels. In the first postnatal weeks, neuronal protein synthesis and proteasomal protein degradation are enhanced, with endoplasmic reticulum stress, and energy depletion, leading to proteasomal impairment and an accumulation of nondegraded ubiquitinated protein. Increased protein turnover is associated with enhanced mTORC1 activity restricted to the postnatal period in UCH-L1–deficient brains. Inhibition of mTORC1 with rapamycin decreases protein synthesis and ubiquitin accumulation in UCH-L1–deficient neurons. Strikingly, rapamycin treatment in the first 8 postnatal days ameliorates the neurological phenotype of UCH-L1–deficient mice up to 16 weeks, suggesting that early control of protein homeostasis is imperative for long-term neuronal survival. In summary, we identified a critical presymptomatic period during which UCH-L1–dependent enhanced protein synthesis results in neuronal strain and progressive loss of neuronal function.
机译:泛素C末端水解酶L1(UCH-L1)是中枢神经系统中最丰富,最神秘的酶之一。基于现有的UCH-L1基因敲除模型,认为UCH-L1是维持轴突完整性所必需的,尽管其在神经元中的高表达,但对于神经元的发育并不需要。有几条证据表明,UCH-L1在mUB体内平衡中起着作用,尽管体内特定的底物仍然难以捉摸。由于尚不清楚UCH-L1缺陷神经变性的确切机制,我们建立了UCH-L1缺陷转基因小鼠模型。通过进行生化和行为分析,我们可以显示,U​​CH-L1缺乏症会导致出生后第一周感觉运动反射的加速发展,然后在正常脑mUB水平设定为青春期后开始运动功能退化。在出生后的头几周,神经元蛋白的合成和蛋白酶体蛋白的降解增强,内质网应激和能量消耗减少,导致蛋白酶体损伤和未降解的泛素化蛋白积聚。在UCH-L1缺陷型脑中,蛋白质更新增加与限制在出生后的mTORC1活性增强有关。雷帕霉素对mTORC1的抑制作用会降低UCH-L1缺陷型神经元的蛋白质合成和泛素积累。令人惊讶的是,在出生后的前8天雷帕霉素治疗可改善UCH-L1缺陷型小鼠长达16周的神经表型,这表明早期控制蛋白质稳态是长期神经元生存所必需的。总之,我们确定了一个关键的症状前期,在此期间UCH-L1依赖的增强蛋白合成导致神经元劳损和神经元功能的逐步丧失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号