首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Identification and paleoclimatic significance of magnetite nanoparticles in soils
【2h】

Identification and paleoclimatic significance of magnetite nanoparticles in soils

机译:土壤中磁铁矿纳米颗粒的鉴定及其古气候意义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In the world-famous sediments of the Chinese Loess Plateau, fossil soils alternate with windblown dust layers to record monsoonal variations over the last ∼3 My. The less-weathered, weakly magnetic dust layers reflect drier, colder glaciations. The fossil soils (paleosols) contain variable concentrations of nanoscale, strongly magnetic iron oxides, formed in situ during the wetter, warmer interglaciations. Mineralogical identification of the magnetic soil oxides is essential for deciphering these key paleoclimatic records. Formation of magnetite, a mixed Fe2+/Fe3+ ferrimagnet, has been linked to soil redox oscillations, and thence to paleorainfall. An opposite hypothesis states that magnetite can only form if the soil is water saturated for significant periods in order for Fe3+ to be reduced to Fe2+, and suggests instead the temperature-dependent formation of maghemite, an Fe3+-oxide, much of which ages subsequently into hematite, typically aluminum substituted. This latter, oxidizing pathway would have been temperature, but not rainfall dependent. Here, through structural fingerprinting and scanning transmission electron microscopy and electron energy loss spectroscopy analysis, we prove that magnetite is the dominant soil-formed ferrite. Maghemite is present in lower concentrations, and shows no evidence of aluminum substitution, negating its proposed precursor role for the aluminum-substituted hematite prevalent in the paleosols. Magnetite dominance demonstrates that magnetite formation occurs in well-drained, generally oxidizing soils, and that soil wetting/drying oscillations drive the degree of soil magnetic enhancement. The magnetic variations of the Chinese Loess Plateau paleosols thus record changes in monsoonal rainfall, over timescales of millions of years.
机译:在中国黄土高原举世闻名的沉积物中,化石土壤与飞扬的尘土层交替出现,以记录最后3 My的季风变化。风化较弱,磁性较弱的尘埃层反射的是干燥,较冷的冰川。化石土壤(古土壤)含有浓度不等的纳米级强磁性氧化铁,它们是在较湿,较暖的冰川融化过程中原位形成的。磁性土壤氧化物的矿物学识别对于破译这些关键的古气候记录至关重要。磁铁矿的形成,是Fe 2 + / Fe 3 + 混合的铁素体磁铁,与土壤氧化还原振荡有关,并因此与古降雨有关。相反的假设指出,磁铁矿只有在土壤长时间处于水饱和状态才能形成,才能将Fe 3 + 还原为Fe 2 + 。磁赤铁矿(Fe 3+氧化物)随温度的变化而形成,其中大部分会老化成赤铁矿,通常用铝取代。后者的氧化途径本来是温度,但与降雨无关。在这里,通过结构指纹图谱和扫描透射电子显微镜以及电子能量损失谱分析,我们证明磁铁矿是主要的土壤形成的铁素体。磁赤铁矿以较低的浓度存在,并且没有显示出铝被取代的证据,否定了其对古土壤中普遍存在的铝取代的赤铁矿的提议前体作用。磁铁矿的优势表明,磁铁矿的形成发生在排水良好的土壤(通常是氧化性土壤)中,土壤的润湿/干燥振荡驱动了土壤磁化程度的提高。因此,中国黄土高原古土壤的磁性变化记录了数百万年的季风雨量变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号