首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Inaugural Article: Digitizing omics profiles by divergence from a baseline
【2h】

Inaugural Article: Digitizing omics profiles by divergence from a baseline

机译:开幕文章:通过与基线的差异数字化组学概况

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data collected from omics technologies have revealed pervasive heterogeneity and stochasticity of molecular states within and between phenotypes. A prominent example of such heterogeneity occurs between genome-wide mRNA, microRNA, and methylation profiles from one individual tumor to another, even within a cancer subtype. However, current methods in bioinformatics, such as detecting differentially expressed genes or CpG sites, are population-based and therefore do not effectively model intersample diversity. Here we introduce a unified theory to quantify sample-level heterogeneity that is applicable to a single omics profile. Specifically, we simplify an omics profile to a digital representation based on the omics profiles from a set of samples from a reference or baseline population (e.g., normal tissues). The state of any subprofile (e.g., expression vector for a subset of genes) is said to be “divergent” if it lies outside the estimated support of the baseline distribution and is consequently interpreted as “dysregulated” relative to that baseline. We focus on two cases: single features (e.g., individual genes) and distinguished subsets (e.g., regulatory pathways). Notably, since the divergence analysis is at the individual sample level, dysregulation can be analyzed probabilistically; for example, one can estimate the probability that a gene or pathway is divergent in some population. Finally, the reduction in complexity facilitates a more “personalized” and biologically interpretable analysis of variation, as illustrated by experiments involving tissue characterization, disease detection and progression, and disease–pathway associations.
机译:从组学技术中收集的数据表明,表型内部和表型之间的分子状态普遍存在异质性和随机性。这种异质性的一个突出例子发生在全基因组的mRNA,微小RNA和甲基化分布之间,从一个单独的肿瘤到另一个,甚至在癌症亚型中。但是,当前生物信息学中的方法(例如检测差异表达的基因或CpG位点)是基于人群的,因此无法有效地对样本间多样性进行建模。在这里,我们介绍了一种统一的理论来量化适用于单个组学概况的样本级异质性。具体而言,我们基于来自参考或基线人群(例如正常组织)的一组样品的组学概况,将组学概况简化为数字表示。如果任何子概况的状态(例如,基因子集的表达载体)处于基线分布的估计支持范围之外,则被认为是“发散的”,因此被解释为相对于该基线“失调”。我们关注两种情况:单一特征(例如,单个基因)和独特的子集(例如,调节途径)。值得注意的是,由于差异分析是在单个样本水平上进行的,因此可以概率性地分析失调。例如,人们可以估计某个群体中某个基因或途径发生分化的可能性。最后,复杂性的降低促进了变异的“个性化”和生物学解释,如涉及组织表征,疾病检测和进展以及疾病与途径关联的实验所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号